Skip to main content
Log in

Effects of Annealing Temperature on Exchange Spring Behavior of Barium Hexaferrite/Nickel Zinc Ferrite Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(BaFe12O19)1−x /(Ni0.6Zn0.4Fe2O4) x magnetic nanocomposites with various molar ratios (x = 0.0, 0.1, 0.2, 0.3) have been synthesized by a physical mixing method at different temperatures (T = 700°C to 900°C) and their structure, morphology, and magnetic properties investigated using x-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating-sample magnetometry. The results prove that their magnetic properties were strongly influenced by the sintering temperature as well as the molar ratio of hard to soft phase. The magnetization and switching field distribution curves for the nanocomposites sintered above 800°C showed a single smooth hysteresis loop, suggesting the existence of the exchange spring phenomenon. The variation of the coercivity, saturation magnetization, and ratio of remanence to saturation magnetization (M r/M s) with the hard-to-soft weight ratio can be explained based on the role of exchange and dipole interactions in the nanocomposites. High maximum energy product (BH)max was obtained for the (BaFe12O19)0.9/(Ni0.6Zn0.4Fe2O4)0.1 sample annealed at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M.D. Coey, J. Magn. Magn. Mater. 248, 441 (2002).

    Article  Google Scholar 

  2. F.J. Himpsel, J. Ortega, G.J. Monkey, and O.F. Willis, Adv. Phys. 47, 511 (1998).

    Article  Google Scholar 

  3. D.M. Bruls, T.H. Evers, J.A.H. Kahlman, P.J.W. Van Lankvel, M. Ovsyanko, and E.G.M. Pelssers, Lab Chip 9, 3504 (2009).

    Article  Google Scholar 

  4. R. Chen, M.G. Christianse, and P. Anikeeva, ACS Nano 7, 8990 (2013).

    Article  Google Scholar 

  5. M. Mousavinia, A. Ghasemi, and E. Paimozd, J. Electron. Mater. 42, 2784 (2013).

    Article  Google Scholar 

  6. F. Choueikani, F. Royer, D. Jamon, A. Siblini, J.J. Rousseau, and J. Neveu, Appl. Phys. Lett. 94, 051113 (2009).

    Article  Google Scholar 

  7. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).

    Article  Google Scholar 

  8. C.A. Ross, Annu. Rev. Mater. Res. 31, 203 (2001).

    Article  Google Scholar 

  9. A. Poorbafrani, H. Salamati, and P. Kameli, Ceram. Int. 41, 1603 (2015).

    Article  Google Scholar 

  10. H. Nikmanesh, M. Moradi, G.H. Bordbar, and R. Shams Alam, J. Alloys Compd. 708, 99 (2017).

    Article  Google Scholar 

  11. R. Shams Alam, M. Moradi, and H. Nikmanesh, Mater. Res. Bull. 73, 261 (2016).

    Article  Google Scholar 

  12. Z. Durmus, A. Durmus, and H. Kavas, J. Mater. Sci. 50, 1201 (2015).

    Article  Google Scholar 

  13. J.E. Davie, O. Hellwiga, and E.E. Fullerton, Appl. Phys. Lett. 86, 262501 (2005).

    Article  Google Scholar 

  14. E.F. Knelle and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

    Article  Google Scholar 

  15. Y. Sen, L. Shandong, L. Xiansong, S. Xiaoping, G. Benxi, and D. Youwei, J. Alloys Compd. 343, 217 (2002).

    Article  Google Scholar 

  16. V. Harikrishnan and R. Ezhil Vizhi, J. Magn. Magn. Mater. 418, 217 (2016).

    Article  Google Scholar 

  17. M. Li, H. Yang, Y. Lin, and Y. Yang, Mater. Res. Bull. 60, 195 (2014).

    Article  Google Scholar 

  18. S.M. Radmanes and S.A. Seyyed Ebrahimi, J. Supercond. Nov. Magn. 26, 2411 (2013).

    Article  Google Scholar 

  19. F. Song, X. Shen, M. Liu, and J. Xiang, J. Solid State Chem. 185, 31 (2012).

    Article  Google Scholar 

  20. G.C.P. Leite, E.F. Chagas, R. Pereira, R.J. Prado, A.J. Terezo, M. Alzamora, and E. Baggio-Saitovitch, J. Magn. Magn. Mater. 324, 2711 (2012).

    Article  Google Scholar 

  21. H. Yang, T. Ye, Y. Lin, M. Liu, P. Kang, and G. Zhang, Mater. Chem. Phys. 171, 27 (2016).

    Article  Google Scholar 

  22. C. Fei, Y. Zhang, Z. Yang, Y. Liu, R. Xiong, J. Shi, and X. Ruan, J. Magn. Magn. Mater. 323, 1811 (2011).

    Article  Google Scholar 

  23. L. Guo, X. Shen, F. Song, M. Liu, and Y. Zhu, J. Sol Gel Sci. Technol. 58, 524 (2011).

    Article  Google Scholar 

  24. H. Yang, T. Ye, Y. Lin, M. Liu, G. Zhang, and P. Kang, Mater. Lett. 145, 19 (2015).

    Article  Google Scholar 

  25. S.M. Hoque, C. Srivastava, V. Kumar, N. Venkatesh, H.N. Das, D.K. Saha, and K. Chattopadhyay, Mater. Res. Bull. 48, 2871 (2013).

    Article  Google Scholar 

  26. D. Roy, C. Shivakumara, and P.S. Anil Kumar, J. Magn. Magn. Mater. 321, L11 (2009).

    Article  Google Scholar 

  27. M.A. Amer, T.M. Meaz, S.S. Attalah, and A.I. Ghoneim, Mater. Sci. Semicond. Process. 40, 374 (2015).

    Article  Google Scholar 

  28. M. Jamalian, A. Ghasemi, and M.J. Pourhosseini Asl, J. Electron. Mater. 44, 2856 (2015).

    Article  Google Scholar 

  29. H. Nikmanesh, M. Moradi, G.H. Bordbar, and R. Shams Alam, Ceram. Int. 42, 14342 (2016).

    Article  Google Scholar 

  30. Y. Mohammadifar, H. Shokrollahi, Z. Karimi, and L. Karimi, J. Magn. Magn. Mater. 366, 44 (2014).

    Article  Google Scholar 

  31. A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774 (2008).

    Article  Google Scholar 

  32. A. Ghasemi, J. Magn. Magn. Mater. 361, 112 (2014).

    Article  Google Scholar 

  33. G.B. Ha, R.W. Ga, S. Fu, W.C. Fen, H.Q. Li, W. Chen, W. Li, and Y.Q. Guo, Appl. Phys. A 81, 579 (2005).

    Google Scholar 

  34. X. Shen, F. Song, J. Xiang, M. Liu, Y. Zhu, and Y. Wang, J. Am. Ceram. Soc. 95, 3863 (2012).

    Article  Google Scholar 

  35. Y. Lin, P. Kang, H. Yang, and M. Liu, J. Alloys Compd. 641, 223 (2015).

    Article  Google Scholar 

  36. B.K. Rai, L. Wang, S.R. Mishra, V.V. Nguyen, and J.P. Liu, J. Nanosci. Nanotechnol. 14, 5272 (2014).

    Article  Google Scholar 

  37. K.P. Remya, D. Prabhu, S. Amirthapandian, C. Viswanathan, and N. Ponpandian, J. Magn. Magn. Mater. 406, 233 (2016).

    Article  Google Scholar 

  38. K.W. Moo, S.G. Cho, Y.H. Cho, K.H. Kim, and J. Kim, Phys. Status Solidi A 204, 4141 (2007).

    Article  Google Scholar 

  39. C.B. Ron, H.W. Zhang, R.J. Chen, S.L. He, and B.G. Shen, J. Magn. Magn. Mater. 302, 126 (2006).

    Article  Google Scholar 

  40. M. Goudarzi and R. Talebi, J. Mater. Sci. Mater. Electron. 27, 4470 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Iran National Science Foundation (95004056) at Isfahan University of Technology and Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Moradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikmanesh, H., Moradi, M., Kameli, P. et al. Effects of Annealing Temperature on Exchange Spring Behavior of Barium Hexaferrite/Nickel Zinc Ferrite Nanocomposites. J. Electron. Mater. 46, 5933–5941 (2017). https://doi.org/10.1007/s11664-017-5576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5576-8

Keywords

Navigation