Skip to main content
Log in

Functional Iron Oxide–Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains (Salmonella enteritidis and Klebsiella pneumoniae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Costi, A.E. Saunders, and U. Banin, Angew. Chem. Int. Ed. 49, 4878 (2010).

    Article  Google Scholar 

  2. K.C.-F. Leung and S. Xuan, Chem. Rec. 16, 458 (2016).

    Article  Google Scholar 

  3. N.C. Bigall, W.J. Parak, and D. Dorfs, Nano Today 7, 282 (2012).

    Article  Google Scholar 

  4. G. Li and Z. Tang, Nanoscale 6, 3995 (2014).

    Article  Google Scholar 

  5. H. Woo and K.H. Park, Catal. Today 278, 209 (2016).

    Article  Google Scholar 

  6. S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, and D. Menon, ACS Appl. Mater. Interfaces 4, 251 (2011).

    Article  Google Scholar 

  7. C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, and S. Sun, Angew. Chem. Int. Ed. 47, 173 (2008).

    Article  Google Scholar 

  8. J. Chung, J. Kim, Y. Jang, S. Byun, T. Hyeon, and B.M. Kim, Tetrahedron Lett. 54, 5192 (2013).

    Article  Google Scholar 

  9. S. Byun, Y. Song, and B.M. Kim, ACS Appl. Mater. Interfaces 8, 14637 (2016).

    Article  Google Scholar 

  10. M. Zhu, C. Wang, D. Meng, and G. Diao, J. Mater. Chem. A 1, 2118 (2013).

    Article  Google Scholar 

  11. M.K. Rai, S.D. Deshmukh, A.P. Ingle, and A.K. Gade, J. Appl. Microbiol. 112, 841 (2012).

    Article  Google Scholar 

  12. S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K.M. Fromm, Chem. Rev. 113, 4708 (2013).

    Article  Google Scholar 

  13. Q.H. Tran, V.Q. Nguyen, and A.-T. Le, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013).

    Article  Google Scholar 

  14. H.-J. Park, J.Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M.B. Gu, and J. Yoon, Water Res. 43, 1027 (2009).

    Article  Google Scholar 

  15. G.A. Sotiriou and S.E. Pratsinis, Environ. Sci. Technol. 44, 5649 (2010).

    Article  Google Scholar 

  16. C. Marambio-Jones and E.M.V. Hoek, J. Nanoparticle Res. 12, 1531 (2010).

    Article  Google Scholar 

  17. C. Levard, E.M. Hotze, G.V. Lowry, and G.E. Brown Jr, Environ. Sci. Technol. 46, 6900 (2012).

    Article  Google Scholar 

  18. Z. Wei, Z. Zhou, M. Yang, C. Lin, Z. Zhao, D. Huang, Z. Chen, and J. Gao, J. Mater. Chem. 21, 16344 (2011).

    Article  Google Scholar 

  19. L.M. Tung, N.X. Cong, L.T. Huy, N.T. Lan, V.N. Phan, N.Q. Hoa, L.K. Vinh, N.V. Thinh, L.T. Tai, and K. Mølhave, J. Nanosci. Nanotechnol. 16, 5902 (2016).

    Article  Google Scholar 

  20. J. Wang, X. Wu, C. Wang, N. Shao, P. Dong, R. Xiao, and S. Wang, ACS Appl. Mater. Interfaces 7, 20919 (2015).

    Article  Google Scholar 

  21. T. Donnelly, W.E. Smith, K. Faulds, and D. Graham, Chem. Commun. 50, 12907 (2014).

    Article  Google Scholar 

  22. P. Dallas, J. Tucek, D. Jancik, M. Kolar, A. Panacek, and R. Zboril, Adv. Funct. Mater. 20, 2347 (2010).

    Article  Google Scholar 

  23. R. Prucek, J. Tuček, M. Kilianová, A. Panáček, L. Kvítek, J. Filip, M. Kolář, K. Tománková, and R. Zbořil, Biomaterials 32, 4704 (2011).

    Article  Google Scholar 

  24. M.K. Paczosa and J. Mecsas, Microbiol. Mol. Biol. Rev. 80, 629 (2016).

    Article  Google Scholar 

  25. R. Putturu, T. Eevuri, B. Ch, and K. Nelapati, Int. J. Pharm. Biol. Sci. 5, 86 (2015).

    Google Scholar 

  26. W.M. Linam and M.A. Gerber, Pediatr. Infect. Dis. J. 26, 747 (2007).

    Article  Google Scholar 

  27. C.R. Lane, S. LeBaigue, O.B. Esan, A.A. Awofisyo, N.L. Adams, I.S. Fisher, K.A. Grant, T.M. Peters, L. Larkin, and R.H. Davies, Emerg. Infect. Dis. 20, 1097 (2014).

    Article  Google Scholar 

  28. T.H. Vo, N.H. Le, T.T.D. Cao, J.P. Nuorti, and N.N.T. Minh, Int. J. Infect. Dis. 26, 128 (2014).

    Article  Google Scholar 

  29. E.J. Threlfall, FEMS Microbiol. Rev. 26, 141 (2002).

    Article  Google Scholar 

  30. E. Landeras, M.A. González-Hevia, and M.C. Mendoza, Int. J. Food Microbiol. 43, 81 (1998).

    Article  Google Scholar 

  31. I. Graeber, M.A. Montenegro, C. Bunge, U. Boettcher, H. Tobias, E.A. Heinemeyer, and R. Helmuth, Eur. J. Epidemiol. 11, 325 (1995).

    Article  Google Scholar 

  32. Y.S. Kang, S. Risbud, J.F. Rabolt, and P. Stroeve, Chem. Mater. 8, 2209 (1996).

    Article  Google Scholar 

  33. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie: Perkin–Elmer, 1992).

    Google Scholar 

  34. Y. Mao, P. Yi, Z. Deng, and J. Ge, CrystEngComm 15, 3575 (2013).

    Article  Google Scholar 

  35. C.E. Hoppe, M. Lazzari, I. Pardiñas-Blanco, and M.A. López-Quintela, Langmuir 22, 7027 (2006).

    Article  Google Scholar 

  36. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S.E. Skrabalak, Dalton Trans. 44, 17883 (2015).

    Article  Google Scholar 

  37. Y. Zhang, J.-Y. Liu, S. Ma, Y.-J. Zhang, X. Zhao, X.-D. Zhang, and Z.-D. Zhang, J. Mater. Sci. Mater. Med. 21, 1205 (2010).

    Article  Google Scholar 

  38. A. Amarjargal, L.D. Tijing, I.-T. Im, and C.S. Kim, Chem. Eng. J. 226, 243 (2013).

    Article  Google Scholar 

  39. V.G. Pol, D.N. Srivastava, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, and A. Gedanken, Langmuir 18, 3352 (2002).

    Article  Google Scholar 

  40. I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Adv. Mater. 18, 1745 (2006).

    Article  Google Scholar 

  41. K. Zhao, C. Wu, Z. Deng, Y. Guo, and B. Peng, RSC Adv. 5, 52726 (2015).

    Article  Google Scholar 

  42. H. Gu, Z. Yang, J. Gao, C. Chang, and B. Xu, J. Am. Chem. Soc. 127, 34 (2005).

    Article  Google Scholar 

  43. J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, and Y. Liu, Nanoscale 3, 5034 (2011).

    Article  Google Scholar 

  44. J. Ma, K. Wang, and M. Zhan, ACS Appl. Mater. Interfaces 7, 16027 (2015).

    Article  Google Scholar 

  45. X. Liu, R. Jin, D. Chen, L. Chen, S. Xing, H. Xing, Y. Xing, and Z. Su, J. Mater. Chem. A 3, 4307 (2015).

    Article  Google Scholar 

  46. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anh-Tuan Le or Vu Ngoc Phan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trang, V.T., Tam, L.T., Van Quy, N. et al. Functional Iron Oxide–Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity. J. Electron. Mater. 46, 3381–3389 (2017). https://doi.org/10.1007/s11664-017-5314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5314-2

Keywords

Navigation