Skip to main content
Log in

Interfacial Reactions Between ZnAl(Ge) Solders on Cu and Ni Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reactions between zinc-aluminum-germanium solder and copper/nickel substrates were investigated after 30 min of soldering at 420°C that simulates a wafer-level bonding process, and the results were compared to a eutectic zinc–aluminum solder. The ZnAlGe system (81.4 at.% Zn, 13.1 at.% Al, 5.5 at.% Ge) was selected in order to decrease the eutectic temperature of the ZnAleut (88.7 at.% Zn, 11.3 at.% Al) for high-temperature lead-free solder applications. In addition, a standard high temperature storage test at 150°C was performed up to 3000 h in order to investigate the evolution of the interconnection microstructures. Extensive copper dissolution was discovered during the soldering process. Germanium did not participate in any of the interfacial reactions on a copper substrate. On a nickel substrate, rapid formation of intermetallic compounds was discovered with both solders, and all the aluminum from the 500 μm thick solder was consumed by the formation of the Al3Ni2 phase during bonding. Germanium was observed to dissolve in the Al3Ni2 phase, but the addition of germanium to the solder was not found to affect markedly the interfacial microstructure. Based on the results, isothermal sections at 150°C of Al-Cu–Zn and Al-Ni-Zn systems are presented with superimposed diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Parliament, Off. J. Eur. Union 54, 88 (2011).

    Google Scholar 

  2. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and S. Mucklejohn, J. Mater. Eng. Perform. 21, 629 (2012).

    Article  Google Scholar 

  3. V. Lindroos, T. Motooka, S. Franssila, M. Paulasto-Krockel, M. Tilli, and V.-M. Airaksinen, Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed. (Amsterdam: Elsevier, 2015).

    Google Scholar 

  4. G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).

    Article  Google Scholar 

  5. K. Suganuma, S. Kim, and K. Kim, J. Miner. Met. Mater. Soc. 61, 64 (2009).

    Article  Google Scholar 

  6. V.R. Manikam, and K.Y. Cheong, Components Packag. Manuf. Technol. IEEE Trans. 1, 457 (2011).

    Article  Google Scholar 

  7. V. Chidambaram, J. Hattel, and J. Hald, Microelectron. Eng. 88, 981 (2011).

    Article  Google Scholar 

  8. J. Bae, K. Shin, J. Lee, M. Kim, and C. Yang, Appl. Microsc. 45, 89 (2015).

    Article  Google Scholar 

  9. R. Mahmudi, and M. Eslami, J. Electron. Mater. 39, 1168 (2011).

    Article  Google Scholar 

  10. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, J. Mater. Sci.: Mater. Electron. 21, 875 (2010).

    Google Scholar 

  11. H.G. Song, J.P. Ahn, and J.W. Morris, J. Electron. Mater. 30, 1083 (2001).

    Article  Google Scholar 

  12. J.M. Song, H.Y. Chuang, and Z.M. Wu, J. Electron. Mater. 35, 1041 (2006).

    Article  Google Scholar 

  13. J.N. Lalena, N.F. Dean, and M.W. Weiser, J. Electron. Mater. 31, 1244 (2002).

    Article  Google Scholar 

  14. X. Yang, W. Hu, X. Yan, and Y. Lei, J. Electron. Mater. 44, 1128 (2015).

    Article  Google Scholar 

  15. K.H. Jae-Ean Lee, K.-S. Kim, K. Suganuma, and J. Takenaka, Mater. Trans. 46, 2413 (2005).

    Article  Google Scholar 

  16. S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz, 2010 12th Electron. Packag. Technol. Conf. EPTC 2010 660 (2010).

  17. M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, J. Electron. Mater. 31, 278 (2002).

    Article  Google Scholar 

  18. T. Yamaguchi, O. Ikeda, Y. Oda, S. Hata, K. Kuroki, H. Kuroda, and A. Hirose, J. Electron. Mater. 44, 751 (2015).

    Article  Google Scholar 

  19. L. Liu, M. Mirgkizoudi, P. Zhang, L. Zhou, and C. Liu, Electron. Syst. Conf. ESTC 1 (2014).

  20. T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, J. Electron. Mater. 28, 1172 (1999).

    Article  Google Scholar 

  21. A. Haque, B.H. Lim, A.S.M. Haseeb, and H.H. Masjuki, J. Mater. Sci.: Mater. Electron. 23, 115 (2012).

    Google Scholar 

  22. L. Li, Y. Liu, H. Gao, and Z. Gao, J. Mater. Sci.: Mater. Electron. 24, 336 (2013).

    Google Scholar 

  23. X. Yan, X. Yang, W. Hu, and Y. Lei, J. Mater. Sci.: Mater. Electron. 26, 7537 (2015).

    Google Scholar 

  24. T. Gancarz, J. Pstruś, P. Fima, and S. Mosińska, J. Mater. Eng. Perform. 21, 599 (2012).

    Article  Google Scholar 

  25. N. Kang, H.S. Na, S.J. Kim, and C.Y. Kang, J. Alloys Compd. 467, 246 (2009).

    Article  Google Scholar 

  26. S.-J. Kim, K.-S. Kim, S.-S. Kim, C.-Y. Kang, and K. Suganuma, Mater. Trans. 49, 1531 (2008).

    Article  Google Scholar 

  27. P.W. Chih, B. Joseph, A. Mesa, X. Hong, and G.M. Hao, Electron. Packag. Technol. Conf. 463 (2014).

  28. J. Li, I. Yaqub, M. Corfield, P. Agyakwa, and C.M. Johnson, Integr. Power Syst. 1, 1 (2014).

  29. L. Balanović, D. Manasijević, D. Živković, A. Mitovski, N. Talijan, D. Minić, and Ž. Živković, J. Therm. Anal. Calorim. 110, 221 (2012).

    Article  Google Scholar 

  30. A. Haque, Y.S. Won, A.S.M.A. Haseebl, and H.H. Masjukil, Electron. Syst. Technol. Conf. 1 (2010).

  31. Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, J. Electron. Mater. 37, 314 (2008).

    Article  Google Scholar 

  32. L. Liu, L. Zhou, and C. Liu, Electron. Components Technol. Conf. 1348 (2014).

  33. M. Prach, and R. Koleňák, Proc. Eng. 100, 1370 (2015).

    Article  Google Scholar 

  34. T. Gancarz, J. Pstruś, P. Fima, and S. Mosińska, J. Alloys Compd. 582, 313 (2014).

    Article  Google Scholar 

  35. V. Raghavan, J. Phase Equilibria Diffus. 28, 183 (2007).

    Article  Google Scholar 

  36. J.D. Villegas-Cardenas, M.L. Saucedo-Muñoz, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, and J.L. Gonzalez-Velazquez, Mater. Res.17, 1137 (2014)

  37. Y.H. Zhu, W.B. Lee, and S. To, J. Mater. Sci. 38, 1945 (2003).

    Article  Google Scholar 

  38. S.-M. Liang, and R. Schmid-Fetzer, Calphad 52, 21 (2016).

    Article  Google Scholar 

  39. H. Chen, X. Xin, D.Y. Dong, Y.P. Ren, and S.M. Hao, Acta Metall. Sin. 17, 269 (2004).

    Google Scholar 

  40. Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, and K. Ishida, J. Electron. Mater. 38, 54 (2009).

    Article  Google Scholar 

  41. V. Raghavan, J. Phase Equilibria Diffus. 33, 478 (2012).

    Article  Google Scholar 

  42. G. Ghosh, and J. Van Humbeeck, Light Met. Syst. 11A2, 1 (2005).

  43. H. Xu, Y. Du, Y. Zhou, and F. Yin, Int. J. Mater. Res. 99, 644 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Rautiainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautiainen, A., Vuorinen, V. & Paulasto-Kröckel, M. Interfacial Reactions Between ZnAl(Ge) Solders on Cu and Ni Substrates. J. Electron. Mater. 46, 2323–2333 (2017). https://doi.org/10.1007/s11664-016-5272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5272-0

Keywords

Navigation