Skip to main content
Log in

Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan VA, Goodfellow BW, Panthani MG et al (2010) Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy Environ Sci 3:1600. doi:10.1039/c0ee00098a

    Article  Google Scholar 

  • Akhavan VA, Harvey TB, Stolle JC et al (2013) Influence of composition on the performance of sintered Cu(in,Ga)Se2 nanocrystal thin-film photovoltaic devices. ChemSusChem 6:481–486. doi:10.1002/cssc.201200677

    Article  Google Scholar 

  • Bär M, Bohne W, Röhrich J et al (2004) Determination of the band gap depth profile of the penternary Cu(In1-xGax)(SySe1-y)2 chalcopyrite from its composition gradient. J Appl Phys 96:3857. doi:10.1063/1.1786340

    Article  Google Scholar 

  • Burgelman M, Engelhardt F, Guillemoles JF et al (1997) Defects in Cu(in,Ga)Se2 semiconductors and their role in the device performance of thin film solar cells. Prog Photovolt Res Appl 5:121–130. doi:10.1002/1099-159X

    Article  Google Scholar 

  • Contreras MA, Ramanathan K, AbuShama J, et al. (2005) Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells. 209–216. doi:10.1002/pip.626

  • Gifford J (2015) Solar Frontier hits 22.3% on CIGS cell. http://www.pv-magazine.com/news/details/beitrag/solar-frontier-hits-223-on-cigs-cell_100022342/#axzz4A1XiBckL.

  • Guo Q, Ford GM, Agrawal R, Hillhouse HW (2013) Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks. Prog Photovolt Res Appl 21:64–71. doi:10.1002/pip

    Article  Google Scholar 

  • Habas SE, Platt HAS, Van Hest MFAM, Ginley DS (2010) Low-cost inorganic solar cells: from ink to printed device. Chem Rev 110:6571–6594. doi:10.1021/cr100191d

    Article  Google Scholar 

  • Klugius I, Miller R, Quintilla A et al (2012) Growth mechanism of thermally processed Cu(In,Ga)S2 precursors for printed Cu(In,Ga)(S,Se)2 solar cells. Phys status solidi - Rapid Res Lett 6:297–299. doi:10.1002/pssr.201206191

    Article  Google Scholar 

  • Lee DH, Chang YJ, Herman GS, Chang CH (2007) A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv Mater 19:843–847. doi:10.1002/adma.200600961

    Article  Google Scholar 

  • Lim T, Yang J, Lee S et al (2012) Deposit pattern of inkjet printed pico-liter droplet. Int J Precis Eng Manuf 13:827–833. doi:10.1007/s12541-012-0108-1

    Article  Google Scholar 

  • Lin X, Kavalakkatt J, Lux-Steiner MC, Ennaoui A (2015) Inkjet-Printed Cu2ZnSn(S,Se)4 Solar Cells. Adv Sci 4:n/a–n/a. doi:10.1002/advs.201500028

  • McLeod SM, Hages CJ, Carter NJ, Agrawal R (2015) Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks. Prog Photovolt Res Appl 23:1550–1556

    Article  Google Scholar 

  • Mitzi DB, Yuan M, Liu W et al (2009) Hydrazine-based deposition route for device-quality CIGS films. Thin Solid Films 517:2158–2162. doi:10.1016/j.tsf.2008.10.079

    Article  Google Scholar 

  • Neophytou M, Georgiou E, Fyrillas MM, Choulis SA (2014) Two step sintering process and metal grid design optimization for highly efficient ITO free organic photovoltaics. Sol Energy Mater Sol Cells 122:1–7. doi:10.1016/j.solmat.2013.11.021

    Article  Google Scholar 

  • Park BK, Kim D, Jeong S et al (2007) Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515:7706–7711. doi:10.1016/j.tsf.2006.11.142

    Article  Google Scholar 

  • Pettersson J, Torndahl T, Platzer-Bjorkman C et al (2013) The unfluence of absorber thickness on Cu(In,Ga)Se2 solar cells with different buffer layers. IEEE J Photovoltaics 3:1376–1382. doi:10.1109/jphotov.2013.2276030

    Article  Google Scholar 

  • Todorov TK, Gunawan O, Gokmen T, Mitzi DB (2013) Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Prog Photovoltaics Res Appl 82–87. doi:10.1002/pip

  • Vidmar T, Topič M, Dzik P, Opara Krašovec U (2014) Inkjet printing of sol-gel derived tungsten oxide inks. Sol Energy Mater Sol Cells 125:87–95. doi:10.1016/j.solmat.2014.02.023

    Article  Google Scholar 

  • Virtuani A, Lotter E, Powalla M, et al. (2014) Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. 014906:0–11. doi:10.1063/1.2159548

  • Wang W, Su Y-W, Chang C (2011) Inkjet printed chalcopyrite CuInxGa1−xSe2 thin film solar cells. Sol Energy Mater Sol Cells 95:2616–2620. doi:10.1016/j.solmat.2011.05.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Barbé.

Ethics declarations

Funding

The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbé, J., Eid, J., Ahlswede, E. et al. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells. J Nanopart Res 18, 379 (2016). https://doi.org/10.1007/s11051-016-3686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3686-5

Keywords

Navigation