Skip to main content
Log in

The Melting Characteristics and Interfacial Reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu Joints During Reflow Soldering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the melting characteristics and interfacial reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu (Sn/SAC305-paste/Cu) structure joints were studied using differential scanning calorimetry, in order to gain a deeper and broader understanding of the interfacial behavior and metallurgical combination among the substrate (under-bump metallization), solder ball and solder paste in a board-level ball grid array (BGA) assembly process, which is often seen as a mixed assembly using solder balls and solder pastes. Results show that at the SAC305 melting temperature of 217°C, neither the SAC305-paste nor the Sn-ball coalesce, while an interfacial reaction occurs between the SAC305-paste and Cu. A slight increase in reflow temperature (from 217°C to 218°C) results in the coalescence of the SAC305-paste with the Sn-ball. The Sn-ball exhibits premelting behavior at reflow temperatures below its melting temperature, and the premelting direction is from the bottom to the top of the Sn-ball. Remarkably, at 227°C, which is nearly 5°C lower than the melting point of pure Sn, the Sn-ball melts completely, resulting from two eutectic reactions, i.e., the reaction between Sn and Cu and that between Sn and Ag. Furthermore, a large amount of bulk Cu6Sn5 phase forms in the solder due to the quick dissolution of Cu substrate when the reflow temperature is increased to 245°C. In addition, the growth of the interfacial Cu6Sn5 layer at the SAC305-paste/Cu interface is controlled mainly by grain boundary diffusion, while the growth of the interfacial Cu3Sn layer is controlled mainly by bulk diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Article  Google Scholar 

  2. J. Shen and Y.C. Chan, J. Alloy. Compd. 477, 552 (2009).

    Article  Google Scholar 

  3. P.C. Shih and K.L. Lin, J. Alloy. Compd. 422, 153 (2006).

    Article  Google Scholar 

  4. T.K. Lee, J. Electron. Mater. 42, 599 (2013).

    Article  Google Scholar 

  5. B. Wang, J.J. Li, A. Gallagher, J. Wrezel, P. Towashirporn, and N.Q. Zhao, Microelectron. Reliab. 52, 1475 (2012).

    Article  Google Scholar 

  6. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  7. H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, Mater. Sci. Eng. A 407, 36 (2005).

    Article  Google Scholar 

  8. S.K. Kang and S. Purushothaman, J. Electron. Mater. 27, 1199 (1998).

    Article  Google Scholar 

  9. G. Ghosh, Acta Mater. 48, 3719 (2000).

    Article  Google Scholar 

  10. M.B. Zhou, X. Ma, and X.P. Zhang, J. Electron. Mater. 40, 189 (2011).

    Article  Google Scholar 

  11. Y. Tian, J. Chow, X. Liu, Y.P. Wu, and S.K. Sitaraman, J. Electron. Mater. 42, 230 (2013).

    Article  Google Scholar 

  12. M.L. Huang and F. Yang, J. Mater. Sci. Mater. Electron. 26, 933 (2015).

    Article  Google Scholar 

  13. Y. Liu, P. Fiacco, and N.C. Lee, in Proceedings of 60th Electronic Components and Technology Conference (ECTC) (2010), pp. 451–455.

  14. D.J. Xie, D.K. Shangguan, D. Geiger, D. Gill, V. Vellppan, and K. Chinniah, in Proceedings of 59th Electronic Components and Technology Conference (ECTC) (2009), pp. 752–758.

  15. T.P. Li, J.Y.R. Tan, S.A. Khoo, C.D. Breach, J.A. Hawkins, and IEEE Trans, Compon. Packag. Manuf. Technol. 4, 1871 (2014).

    Article  Google Scholar 

  16. K. Seelig, Circuits Assem. 19, 28 (2008).

    Google Scholar 

  17. D. Amir, R. Aspandiar, S. Buttars, W.W. Chin, and P. Gill, in Proceeding of SMTA International Conference (2009), pp. 409–421.

  18. R. Pandher, N. Jodhan, R. Raut, and M. Liberatore, in Proceedings of Electronics Packaging Technology Conference (2010), pp. 151–156.

  19. D. Frear, D. Grivas, and J.W. Morris, J. Electron. Mater. 16, 181 (1987).

    Article  Google Scholar 

  20. F.S. Wu, B. Wang, B. Du, B. An, and Y.P. Wu, J. Electron. Mater. 38, 860 (2009).

    Article  Google Scholar 

  21. D. Ma, W.D. Wang, and S.K. Lahiri, J. Appl. Phys. 91, 3312 (2002).

    Article  Google Scholar 

  22. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloy. Compd. 352, 226 (2003).

    Article  Google Scholar 

  23. J. Shen, Y.C. Chan, and S.Y. Liu, Intermetallics 16, 1142 (2008).

    Article  Google Scholar 

  24. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  Google Scholar 

  25. N.S. Bosco and F.W. Zok, Acta Mater. 52, 2965 (2004).

    Article  Google Scholar 

  26. D.K. Shangguan, Lead-Free Solder Interconnect Reliability (Ohio: ASM International, 2005), p. 42.

    Google Scholar 

  27. D.G. Kim and S.B. Jung, J. Alloy. Compd. 386, 151 (2005).

    Article  Google Scholar 

  28. M.L. Huang and F. Yang, Sci. Rep. 4, 7117 (2014).

    Article  Google Scholar 

  29. M. Schaefer, R.A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).

    Article  Google Scholar 

  30. Y.S. Huang, H.Y. Hsiao, C. Chen, and K.N. Tu, Scrip. Mater. 66, 741 (2012).

    Article  Google Scholar 

  31. J. Shen, Y.C. Chan, and S.Y. Liu, Acta Mater. 57, 5196 (2009).

    Article  Google Scholar 

  32. M.B. Zhou, X. Ma, and X.P. Zhang, Acta Metall. Sin. 49, 341 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant Nos. 51405162 and 51275178, and the Municipal Project of the Integration of Production, Education and Research of Dongguan City under Grant No. 2014509102203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J.Q., Zhou, M.B. & Zhang, X.P. The Melting Characteristics and Interfacial Reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu Joints During Reflow Soldering. J. Electron. Mater. 46, 1504–1515 (2017). https://doi.org/10.1007/s11664-016-5189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5189-7

Keywords

Navigation