Skip to main content
Log in

Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnesium silicide (Mg2Si) compounds doped with 8000 ppm Sb were prepared using different Si sources via liquid–solid reaction synthesis and hot pressing. The Si sources were solar-grade Si, metal-grade Si, and sludge Si. The Si sludge generated during the cutting of Si wafers was recycled as a Si source. The x-ray diffraction (XRD) patterns of the Si sludge corresponded to Si, silicon dioxide (SiO2), and C, whereas the solar-grade Si and metal-grade Si were indexed as a single Si phase. For the sintered compact samples, the Mg2Si phase was predominant in all the samples. However, small amounts of impurity phases, MgO and SiC, were identified in the sintered Mg2Si that used sludge Si. The thermoelectric properties of the Mg2Si produced using solar-grade Si or metal-grade Si were almost the same at the measured temperature. The efficacy of the low-purity metal-grade Si was demonstrated. However, the power factor and thermal conductivity of the Mg2Si produced using sludge Si were smaller than those of the other samples over the entire measured temperature range. However, the maximum value of ZT was almost the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.E. Borisenko, Semiconducting Silicides (Berlin: Springer, 2000), p. 287.

    Book  Google Scholar 

  2. D.M. Rowe, Thermoelectrics Handbook Macro to Nano (Boca Raton: CRC Press, 2006), ch. 29.

    Google Scholar 

  3. J. Tani and H. Kido, Phys. B 364, 218 (2005).

    Article  Google Scholar 

  4. J. Tani and H. Kido, Intermetallics 15, 1202 (2007).

    Article  Google Scholar 

  5. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  6. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  7. N. Fukushima, T. Iida, M. Akasaka, T. Nemoto, T. Sakamoto, R. Kobayashi, H. Taguchi, K. Nishio, and Y. Takanashi, Mater. Res. Soc. Symp. Proc. 1166, 147 (2009).

    Article  Google Scholar 

  8. T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi, and Y. Takanashi, J. Electron. Mater. 39, 1708 (2010).

    Article  Google Scholar 

  9. J.-Y. Jung, K.-H. Park, and I.-H. Kim, IOP Conf. Ser. 18, 142006 (2011).

    Article  Google Scholar 

  10. S.-M. Choi, K.-H. Kim, I.-H. Kim, S.-U. Kim, and W.-S. Seo, Curr. Appl. Phys. 11, S388 (2011).

    Article  Google Scholar 

  11. S.-W. You and I.-H. Kim, Curr. Appl. Phys. 11, S392 (2011).

    Article  Google Scholar 

  12. S.K. Bux, E.S. Toberer, G.J. Snyder, R.B. Kanerb, and J.-P. Fleuriala, J. Mater. Chem. 21, 12259 (2011).

    Article  Google Scholar 

  13. M. Ioannou, G. Polymeris, E. Hatzikraniotis, A.U. Khan, K.M. Paraskevopoulos, and Th Kyratsi, J. Electron. Mater. 42, 1827 (2013).

    Article  Google Scholar 

  14. S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio, J. Solid State Chem. 193, 142 (2012).

    Article  Google Scholar 

  15. H. Udono, H. Tajima, M. Uchikoshi, and M. Itakura, Jpn. J. Appl. Phys. 54, 07JB06 (2015).

    Article  Google Scholar 

  16. Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, J. Electron. Mater. 39, 1531 (2010).

    Article  Google Scholar 

  17. H.T. Kaibe, L. Rauscher, S. Fujimoto, T. Kurosawa, T. Kanda, M. Mukoujima, I. Aoyama, H. Ishimabushi, K. Ishida, and S. Sano, Proceedings of 23rd International Conference on Thermoelectrics, Adelaide, Australia, 2004, pp. 2994.

  18. T. Nemoto, T. Iida, J. Sato, T. Sakamoto, T. Nakajima, and Y. Takanashi, J. Electron. Mater. 41, 1312 (2012).

    Article  Google Scholar 

  19. B.R. Bathey and M.C. Cretella, J. Mater. Sci. 17, 3077 (1982).

    Article  Google Scholar 

  20. Y. Hayatsu, T. Iida, T. Sakamoto, S. Kurosaki, K. Nishio, Y. Kogo, and Y. Takanashi, J. Solid State Chem. 193, 161 (2012).

    Article  Google Scholar 

  21. K. Uemura and I.A. Nishida, Thermoelectric Semiconductors and Their Applications (Nikkan-Kogyo: Tokyo, 1988), p. 180.

    Google Scholar 

  22. A. Kato, T. Yagi, and N. Fukusako, J. Phys. Condens. Matter. 21, 205801 (2009).

    Article  Google Scholar 

  23. W. Liu, X. Tang, H. Li, J. Sharp, X. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Isoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isoda, Y., Tada, S., Kitagawa, H. et al. Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources. J. Electron. Mater. 45, 1772–1778 (2016). https://doi.org/10.1007/s11664-015-4214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4214-6

Keywords

Navigation