Skip to main content
Log in

Effect of copper (II) nitrate 3H2O on the crystalline, optical and electrical properties of poly(vinyl alcohol) films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composite films of poly (vinyl alcohol) PVA doped with various weight ratios of Cu(NO3)2.3H2O (0, 1, 5, 10 and 20) wt% have been prepared by solution casting method. Using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Ultraviolet–Visible (Uv-Vis) spectroscopy, the synthetic composites were analyzed. The findings showed that Cu(NO3)2.3H2O interacts with the hydroxyl group present in PVA chain. The XRD analysis revealed that after adding Cu(NO3)2.3H2O, PVA crystallites were destroyed. With increasing Cu(NO3)2.3H2O ratio, the absorbance of composite samples increased. The optical band gap energy of the composite samples was calculated using Tauc’s formula and it reduced by increasing dopant concentration. The dielectric modulus and ac conductivity of the composite films have been studied. Ac conductivity was found to increase by increasing the dopant concentration up to 10 wt%. Electrical conduction is carried out using correlated barrier hopping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kimura T, Kajiwara M (1998) Electrical properties of poly(n-butylamino) (di-allylamino)phosphazene. J Mater Sci 33:2955–2959

    Article  CAS  Google Scholar 

  2. Yamaura K, Naitoh M (2002) Preparation of high performance films from poly(vinyl alcohol)/NaCl/H2O systems. J Mater Sci 37:705–708

    Article  CAS  Google Scholar 

  3. Zidan HM (2003) Structural properties of CrF3- and MnCl2-filled poly(vinyl alcohol) films. J Appl Polym Sci 88:516–521

    Article  CAS  Google Scholar 

  4. Bhajantri RF, Ravindrachary V, Harisha A, Crasta V, Nayak SP, Poojary B (2006) Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 47:3591–3598

    Article  CAS  Google Scholar 

  5. Zidan HM (1999) Effect of AgNO3 filling and UV-irradiation on the structure and morphology of VA films. Polym Test 18:449–461

    Article  CAS  Google Scholar 

  6. Zidan HM (2003) Filling-level effect on the physical properties of MgBr2- and MgCl2- filled poly(vinyl acetate) films. J Polym Sci B Polym Phys 41:112–119

    Article  CAS  Google Scholar 

  7. Abdelaziz M (2004) Effect of CsBr-MnCl2 mixed fillers on the crystal structure and optical and electrical properties of poly(vinyl alcohol). J Appl Polym Sci 94:2178–2186

    Article  CAS  Google Scholar 

  8. Kumar HGN, Rao JL, Gopal NO, Narasimhulu KV, Chakradhar RPS, Rajulu AV (2004) Spectroscopic investigations of Mn2+ ions doped polyvinyl alcohol films. Polymer 45:5407–5415

    Article  CAS  Google Scholar 

  9. Kubo JI, Rahman N, Takahashi N, Kawai T, Matsuba G, Nishida K, Kanaya T, Yamamoto M (2009) Improvement of poly(vinyl alcohol) properties by the addition of magnesium nitrate. J Appl Polym Sci 112:1647–1652

    Article  CAS  Google Scholar 

  10. Jiang XC, Zhang XF, Ye DZ, Zhang X, Dai H (2012) Modification of poly(vinyl alcohol) films by the addition of magnesium chloride hexahydrate. Polym Eng Sci 52:1565–1570

    Article  CAS  Google Scholar 

  11. Jiang XC, Jiang T, Zhang XF, Zhang X, Dai H (2013) The plasticizing effect of calcium nitrate on poly(vinyl alcohol). Polym Eng Sci 53:1181–1186

    Article  CAS  Google Scholar 

  12. Jiang XC, Jiang T, Zhang XF, Zhang X, Dai H (2012) Melt processing of poly(vinyl alcohol) through adding magnesium chloride hexahydrate and ethylene glycol as a complex plasticizer. Polym Eng Sci 52:2245–2252

    Article  CAS  Google Scholar 

  13. El-Shahawy MA (2003) Phase transformations of some poly(vinyl alcohol)-NiCl2 composites. Polym Int 52:1919–1924

    Article  CAS  Google Scholar 

  14. Soliman Selim M, Seoudi R, Shabaka AA (2005) Polymer based films embedded with high content of ZnSe nanoparticles. Mater Lett 59:2650–2654

    Article  CAS  Google Scholar 

  15. Wang DH (1996) Polyvinylalcohol film doped with CuCl nanoclusters. Thin Solid Films 288:254–255

    Article  CAS  Google Scholar 

  16. Yu Y-H, Lin C-Y, Yeh J-M, Lin W-H (2003) Preparation and properties of poly(vinyl alcohol)- clay nanocomposite materials. Polymer 44:3553–3560

    Article  CAS  Google Scholar 

  17. Rao JK, Raizada A, Ganguly D, Mankad MM, Satyanarayana SV, Madhu GM (2015) Enhanced mechanical properties of polyvinyl alcohol composite films containing copper oxide nanoparticles as filler. Polym Bull 72:2033–2047

    Article  CAS  Google Scholar 

  18. Sonmez M, Ficai D, Stan A, Bleotu C, Matei L, Ficae A, Andronescu E (2012) Synthesis and characterization of hybrid PVA/Al2O3 thin film. Mater Lett 74:132–136

    Article  CAS  Google Scholar 

  19. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  20. Linga Raju CH, Rao JL, Reddy BCV, Brahmam V (2007) Thermal and IR studies of copper doped polyvinyl alcohol. Bull Mater Sci 30:215–218

    Article  Google Scholar 

  21. Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37:987–997

    Article  CAS  Google Scholar 

  22. Abdullah GO, Saleem SA (2016) Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. J Electron Mater 45:5910–5920

    Article  CAS  Google Scholar 

  23. Mott NF, Davis NF (1979) Electronic process in non-crystalline materials.2nd edn. Oxford University Press, Oxford

    Google Scholar 

  24. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    Article  CAS  Google Scholar 

  25. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric system. J Mater Sci 33:2027–2037

    Article  CAS  Google Scholar 

  26. Dokme I, Alundal S, Gokcen M (2008) Frequency and gate voltage effect on the dielectric properties of Au/SiO2/n-Si structure. Microelectron Eng 85:1910–1914

    Article  CAS  Google Scholar 

  27. Tekeli Z, Gokcen M, Alundal S, Ozcelik S, Ozbay E (2011) On the profile of frequency dependent dielectric properties of (Ni/Au)/GaN/Al0.3Ga0.7N heterostructure. Microelectron Reliab 51:581–586

    Article  CAS  Google Scholar 

  28. Pakma O, Serin N, Serin T, Alundal S (2008) Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2/p-Si/p+ (MOS) structures. J Phys D Appl Phys 41:215103

    Article  Google Scholar 

  29. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys Chem Glasses 13:171

    CAS  Google Scholar 

  30. Mohamed Ali T, Padmanathan N, Selladurai S (2013) Structural, conductivity and dielectric characterization of PEO–PEG blend composite polymer electrolyte dispersed with TiO2 nanoparticles. Ionics 19:1115–1123

    Article  CAS  Google Scholar 

  31. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30:165402 (26 pp)

    Article  Google Scholar 

  32. Arunkumar R, Babu RS, Usha Rani M (2017) Investigation on Al2O3 doped PVC–PBMA blend polymer electrolytes. J Mater Sci Mater Electron 28:3309–3316

    Article  CAS  Google Scholar 

  33. Shobhna C (2018) Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA-PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J Mater Sci Mater Electron 29:10517–10534

    Article  Google Scholar 

  34. Hanafy TA, Elbanna K, El-Sayed S, Hassen A (2011) Dielectric relaxation analysis of biopolymer poly(3-hydroxybutyrate). J Appl Polym Sci 121:3306–3313

    Article  CAS  Google Scholar 

  35. Madani M, Maziad NA, Khafagy RM (2007) Thermally stimulated depolarization current and thermal analysis studies of gamma irradiated lithium-salt/polymer electrolyte blends. J Macromol Sci B Phys 46:1191–1203

    Article  CAS  Google Scholar 

  36. Jonscher AK (1983) Dielectric relaxation in solids, P340. Chelsea Dielectric Press, London

    Google Scholar 

  37. Dulta M, Kunda RS, Hooda J, Murugavel S, Punia R, Kishore N (2015) Temperature and frequency dependent conductivity and electric modulus formulation of manganese modified bismuth silicate glasses. J Non-Cryst Solids 1:423–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Hafez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, R.S., El-Khiyami, S. Effect of copper (II) nitrate 3H2O on the crystalline, optical and electrical properties of poly(vinyl alcohol) films. J Polym Res 27, 26 (2020). https://doi.org/10.1007/s10965-019-1993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1993-0

Keywords

Navigation