Skip to main content
Log in

Adhesion, Modulus and Thermal Conductivity of Porous Epoxy Film on Silicon Wafers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An 8 μm epoxy film deposited on a 350 μm Si (100) Si wafer with a 0.4 μm Au transducer film deposited on top of the polymer film was used to evaluate the thermal conductivity, the modulus of the porous film, and the initiation of spalling upon laser beam irradiation on the back side of the Si wafer. The polymer films were characterized for pore microstructure using scanning electron microscopy and energy dispersive spectrometry. The polymer films were characterized using transient thermo reflectance (TTR) with laser beams illuminating the Au layer. The TTR signal from the polymer film showed only the thermal component and was characteristic of variations associated with thermal conduction into the film. To induce spalling, the back side was illuminated with a Nd-YAG laser beam with a 532 nm wavelength, pulse energy density 1.8 J/cm2, and a repetition rate of 10 Hz for 10 s in conjunction with TTR measurements on the front side. The TTR signal from the polymer film subjected to laser beam incidence from the backside of the Si wafer showed both the thermal and the acoustic components. The acoustic component was used to detect the initial stages of spalling or delamination. The acoustic oscillations were modeled using a modified wave equation to determine the velocity of sound and the modulus of the film. The results were also used to determine the effect of porosity on the modulus of the polymer film. The TTR signal was found to be very sensitive to detection of delamination without complete separation of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Niklaus, G. Stemme, J.-Q. Lu, and R.J. Guttman, J. Appl. Phys. 99, 031101 (2006).

    Article  Google Scholar 

  2. S.D. Brown, J. Adhes. Sci. Technol. 8, 687 (1994).

    Article  Google Scholar 

  3. ASTM E 1876, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus and Poisson’s Ratio by Impulse Excitation (West Conshohocken: Annual Book of ASTM International, 2015).

    Google Scholar 

  4. M. Radovic, E. Lara-Curzio, and L. Riester, Mater. Sci. Eng. 368A, 56 (2004).

    Article  Google Scholar 

  5. P.A. Bosomworth, J. ASTM Int. 7, JAI102953 (2010).

    Article  Google Scholar 

  6. A.S. Maxwell, S. Owen-Jones, and N.M. Jennet, Rev. Sci. Instrum. 75, 970 (2004).

    Article  Google Scholar 

  7. K. Jagannadham, Metall. Mater. Trans. A 46, 229 (2015).

    Article  Google Scholar 

  8. G. Youssef, C. Moulet, and M.S. Goorsky, J. Appl. Phys. 111, 094902 (2012).

    Article  Google Scholar 

  9. A. Jain, V. Gupta, and S.N. Basu, Acta Mater. 53, 3147 (2005).

    Article  Google Scholar 

  10. S.S.V. Kandula, C.D. Hartfield, P.H. Geubelle, and N.R. Sottos, Thin Solid Films 516, 7627 (2008).

    Article  Google Scholar 

  11. A. Federov, R. van Tijum, W.P. Vellinga, and JThM De Hosson, J. Appl. Phys. 101, 043520 (2007).

    Article  Google Scholar 

  12. A. Fedorov, W.P. Vellinga, and JThM De Hosson, J. Appl. Phys. 103, 103523 (2008).

    Article  Google Scholar 

  13. K. Jagannadham, J. Vac. Sci. Technol. A 32, 051101 (2014).

    Article  Google Scholar 

  14. K. Jagannadham, J. Vac. Sci. Technol. 33, 031514 (2015).

    Article  Google Scholar 

  15. K. Jagannadham, IEEE. Trans. Electron Device 61, 1950 (2014).

    Article  Google Scholar 

  16. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, J. Heat Trans. 130, 052401 (2008).

    Article  Google Scholar 

  17. W.A. Harrison, Solid State Theory (New York: Dover Publications Inc, 1979), p. 263.

    Google Scholar 

  18. J.B. Scarborough, Numerical Mathematical Analysis, 4th ed. (Oxford: Oxford University Press, 1958), p. 414.

    Google Scholar 

  19. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Malabar: Krieger Publishing Company, 1992), p. 183.

    Google Scholar 

  20. A.E.H. Love, A Treatise on Mathematical Theory of Elasticity (New York: Dover Publications, 1944), p. 428.

    Google Scholar 

  21. J.R. Hutchinson and C.M. Percival, J. Acoust. Soc. Am. 44, 1204 (1968).

    Article  Google Scholar 

  22. C.M. Percival and J.A. Cheney, Exp. Mech. 9, 49 (1969).

    Article  Google Scholar 

  23. A. Smith, S.J. Wilkinson, and W.N. Reynolds, J. Mater. Sci. 9, 547 (1974).

    Article  Google Scholar 

  24. M.A. Al-Nasassrah, F. Podczeck, and J.M. Newton, Eur. J. Pharm. Biopharm. 46, 31 (1998).

    Article  Google Scholar 

  25. M. Brown and K. Jaganandham, J. Electron. Mater. 44, 2624 (2014).

    Article  Google Scholar 

  26. E. Chapalle, B. Garnier, and B. Bourouga, Int. J. Therm. Sci. 48, 2221 (2009).

    Article  Google Scholar 

  27. J.J. Fuller and E.E. Marotta, J. Thermophys. Heat Trans. 14, 283 (2000).

    Article  Google Scholar 

  28. J.J. Fuller and E.E. Marotta, J. Thermophys. Heat Trans. 15, 228 (2001).

    Article  Google Scholar 

  29. M. Bahrami, M.H. Yovanovich, and E.E. Marotta, J. Electron. Packag. 128, 23 (2006).

    Article  Google Scholar 

  30. A. Birch, W.R.G. Kemp, P.G. Klemens, and R.J. Tainsh, Aust. J. Phys. 12, 455 (1959).

    Article  Google Scholar 

  31. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Article  Google Scholar 

  32. R.M. Spriggs, J. Am. Ceram. Soc. 44, 628 (1961).

    Article  Google Scholar 

  33. M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H.C. Kapteyn, Nat. Mater. 9, 26 (2010).

    Article  Google Scholar 

  34. M.E. Siemens, Q. Li, M.M. Murnane, H.C. Kapteyn, R. Yang, E.H. Anderson, and K.A. Nelson, Appl. Phys. Lett. 94, 093103 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University for SEM characterization, which is supported by the State of North Carolina and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannadham, K. Adhesion, Modulus and Thermal Conductivity of Porous Epoxy Film on Silicon Wafers. J. Electron. Mater. 45, 5877–5884 (2016). https://doi.org/10.1007/s11664-016-4793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4793-x

Keywords

Navigation