Skip to main content
Log in

Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol–gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ∼0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell–Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the IV characteristics indicate bulk limited Poole–Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J.W. Fergus, V.F. Razumov, H. Sitter, S. Bauer, and N.S. Sariciftc, Org. Electron. 11, 1974 (2010).

    Article  Google Scholar 

  2. R.J. Slack, J.R. Gronow, and N. Voulvoulis, Crit. Rev. Environ. Sci. Technol. 34, 419 (2004).

    Article  Google Scholar 

  3. M. Irimia-Vladu, Chem. Soc. Rev. 43, 588 (2014).

    Article  Google Scholar 

  4. C.J. Bettinger and Z. Bao, Polym. Int. 59, 563 (2010).

    Google Scholar 

  5. J.H. Seo, J.-H. Kwon, S.-I. Shin, K.-S. Suh, and B.-K. Ju, Semicond. Sci. Technol. 22, 1039 (2007).

    Article  Google Scholar 

  6. D.P. Martin and S.F. Williams, Biochem. Eng. J. 16, 97 (2003).

    Article  Google Scholar 

  7. M. Yoon, C. Kim, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc. 128, 12851 (2006).

    Article  Google Scholar 

  8. C.J. Bettinger and Z. Bao, Adv. Mater. 22, 651 (2010).

    Article  Google Scholar 

  9. D.H. Kim, Y.-S. Kim, J. Wu, Z. Liu, J. Song, H.-S. Kim, Y.Y. Huang, K.-C. Hwang, and J.A. Rogers, Adv. Mater. 21, 3703 (2009).

    Article  Google Scholar 

  10. H. Sitter, C. Drax, and M. Ramsey, eds., Small Organic Molecules on Surfaces (Berlin: Springer, 2013), p. 53.

  11. Y. Kanbur, M. Irimia-V, E.D. Głowacki, G. Voss, M. Baumgartner, G. Schwabegger, L. Leonat, M. Ullah, H. Sarica, S. Erten-Ela, R. Schwödiauer, H. Sitter, Z. Küçükyavuz, S. Bauer, and N.S. Sariciftc, Org. Electron. 13, 919 (2012).

    Article  Google Scholar 

  12. Y. Yun, C. Pearson, and M.C. Petty, J. Appl. Phys. 105, 034508 (2009).

    Article  Google Scholar 

  13. J.S. Choi, J. Inf. Disp. 9, 35 (2008).

    Article  Google Scholar 

  14. L. Feng, W. Tang, X. Xu, Q. Cui, and X. Guo, IEEE Electron Device Lett. 34, 129 (2013).

    Article  Google Scholar 

  15. W. Kim, S. Kwon, S.-M. Lee, J.Y. Kim, Y. Han, E. Kim, K.C. Choi, S. Park, and B.-C. Park, Org. Electron. 14, 3007 (2013).

    Article  Google Scholar 

  16. A.V.E. Eliana, S.X. Eder, T.T. Lucas, T.S.G. Irene, M.C.F. Maria, and B. Henri, Thin Solid Films 568, 111 (2014).

    Article  Google Scholar 

  17. T. Tunç, H. Uslu, and S. Altindal, Fibers Polym. 12, 886 (2011).

    Article  Google Scholar 

  18. A. Hoffman and N.Y. Ann, Acad. Sci. 62, 944 (2001).

    Google Scholar 

  19. C.V.S. Reddy, X. Han, Q.Y. Zhu, L.Q. Mai, and W. Chen, Microelectron. Eng. 83, 281 (2006).

    Article  Google Scholar 

  20. J. Pajak, M. Ziemski, and B. Nowak, CHEMIK 64, 523 (2010).

    Google Scholar 

  21. K. Burczak, E. Gamianb, and A. Kochman, Biomaterials 17, 2351 (1996).

    Article  Google Scholar 

  22. L. Yali, K.G. Neoh, and E.T. Kang, J. Biomed. Mater. Res. A. 73A, 171 (2005).

    Article  Google Scholar 

  23. Z. Li, H. Huang, and C. Wang, Macromol. Rapid Commun. 27, 152 (2006).

    Article  Google Scholar 

  24. L.S. Ferreira, S. Gerecht, J. Fuller, H.F. Shieh, G. Vunjak-N, and R. Langer, Biomaterials 28, 2706 (2007).

    Article  Google Scholar 

  25. W.E. Mahmoud, Polym. Adv. Technol. 22, 2550 (2011).

    Article  Google Scholar 

  26. S.H. Jin, J.S. Yu, C.A. Lee, J.W. Kim, B.G. Park, and J.D. Lee, J. Korean Phys. Soc. 44, 181 (2004).

    Google Scholar 

  27. M.L. Swiggers, G. Xia, J.D. Slinker, A.A. Gorodetsky, G.G. Malliaras, R.L. Headrick, B.T. Weslowski, R.N. Shashidhar, and C.S. Dulcey, Appl. Phys. Lett. 79, 1300 (2001).

    Article  Google Scholar 

  28. L. Grimm, K.J. Hilke, and E. Scharrer, J. Electrochem. Soc. 130, 1767 (1983).

    Article  Google Scholar 

  29. C.U. Devi, A.K. Sharma, and V.V.R.N. Rao, Mater. Lett. 56, 167 (2002).

    Article  Google Scholar 

  30. T.A. Hanafy, J. Appl. Polym. Sci. 108, 2540 (2008).

    Article  Google Scholar 

  31. S. Mahendia, A.K. Tomar, and S. Kumar, Mater. Sci. Eng. B 176, 530 (2011).

    Article  Google Scholar 

  32. S. Mahendia, A.K. Tomar, P.K. Goyal, and S. Kumar, J. Appl. Phys. 113, 073103 (2013).

    Article  Google Scholar 

  33. S. Mahendia, A.K. Tomar, R.P. Chahal, P.K. Goyal, and S. Kumar, J. Phys. D Appl. Phys. 44, 205105 (2011).

    Article  Google Scholar 

  34. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, J. Appl. Pure Appl. Chem. 108, 510 (2008).

    Google Scholar 

  35. P. Dutta, S. Biswas, and S. de Kumar, Mater. Res. Bull. 37, 193 (2002).

    Article  Google Scholar 

  36. C.J. Knauss, R.R. Myers, and P.S. Smith, Polymer Lett. 10, 737 (1972).

    Article  Google Scholar 

  37. S. Havriliak and S. Negami, Polymer 8, 161 (1967).

    Article  Google Scholar 

  38. S. Havriliak and S. Negami, J. Polym. Sci. C 14, 99 (1996).

    Article  Google Scholar 

  39. F. Salman, R. Khalil, and H. Hazaa, Adv. J. Phys. Sci. 3, 1 (2014).

    Article  Google Scholar 

  40. L.A. Dissado and J.C. Fothergill, Electrical Degradation and Breakdown in Polymers (London: Peter Peregrines Ltd, Redwood Press, 1992), p. 228.

  41. S.H. Deshmukh, D.K. Burghate, V.P. Akhare, V.S. Deogaonkar, P.T. Deshmukh, and M.S. Deshmukh, Bull. Mater. Sci. 30, 51 (2007).

    Article  Google Scholar 

  42. S. Majumder and A.H. Bhuiyan, Poly. Sci. Ser. A 53, 85 (2011).

    Article  Google Scholar 

  43. B.V.R. Chowdari and K. Radhakrishnan, J. Non-Cryst. Sol. 110, 101 (1989).

    Article  Google Scholar 

  44. M.J. Uddin, T.R. Middya, B. Chaudhuri, and H. Sakata, Polymer 55, 15 (2014).

    Article  Google Scholar 

  45. A.K. Jonscher, ed., Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983), p. 350.

  46. A. Kiesow, J.E. Morris, C. Radehaus, and A. Heillman, J. Appl. Phys. 94, 6988 (2003).

    Article  Google Scholar 

  47. M.H. Makled, E. Sheha, T.S. Shanap, and M.K. El-Mansy, J. Adv. Res. 4, 531 (2013).

    Article  Google Scholar 

  48. R.F. Bhajanti, V. Ravindrachary, A. Harisha, G. Ranganathaiah, and G.N. Kumaraswamy, Appl. Phys. A 87, 797 (2007).

    Article  Google Scholar 

  49. A.H. Taha, J. Appl. Phys. 112, 034102 (2012).

    Article  Google Scholar 

  50. R.J. Sengwa and S. Choudhary, Express Polymer Lett. 4, 559 (2010).

    Article  Google Scholar 

  51. J. Mijovic, H. Lee, J. Kenny, and J. Mays, Macromolecules 39, 2172 (2006).

    Article  Google Scholar 

  52. A. Kanapitsas, P. Pissis, and R. Kotsilkova, J. Non-Cryst. Solids 305, 204 (2002).

    Article  Google Scholar 

  53. N. Ahad, E. Saion, and E.G. Gharibshahi, J. Nanomater. (2012). doi:10.1155/2012/857569.

    Google Scholar 

  54. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, Current Appl. Phys. 9, 165 (2009).

    Article  Google Scholar 

  55. R.J. Sengwa, S. Shankhla, and S. Choudhary, Indian J. Pure Appl. Phys. 28, 196 (2010).

    Google Scholar 

  56. F.H.A. El-kader, S.A. Gaafer, K.H. Mahmoud, and S.I. Mohamed, Polymer Compos. 30, 214 (2009).

    Article  Google Scholar 

  57. J.A. Campbell, A.A. Goodwin, and G.P. Simon, Polymer 42, 4731 (2001).

    Article  Google Scholar 

  58. J.H.F.S. Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Mahendia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendia, S., Goyal, P.K., Tomar, .K. et al. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics. J. Electron. Mater. 45, 5418–5426 (2016). https://doi.org/10.1007/s11664-016-4677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4677-0

Keywords

Navigation