Skip to main content
Log in

Effects of Thallium Doping on the Transport Properties of Bi2Te3 Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thallium-doped Tl x Bi2−x Te3 (x = 0.0, 0.05, 0.1, and 0.2) nanopowders were synthesized by the hydrothermal method. The doping effect of thallium on the morphologies of the synthesized nanopowders was investigated. It was found that the doping of thallium can significantly change the morphologies of the synthesized nanopowders. The synthesized nanopowders were hot-pressed into bulk pellets and the doping effects of thallium on the transport properties of these pellets were investigated. The results show that the doping of thallium can enhance the Seebeck coefficient but increase the electrical resistivity. Moreover, the power factors of the thallium-doped samples decrease with the increasing of the thallium doping level as compared with the un-doped sample. This is attributed to the increase of the electrical resistivity and the disappearing of the flower-like morphologies of the doped nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Zhou, G. Chen, X.S. Zhang, Y.C. Xu, B.R. Xu, and M.Q. Li, RSC Advance 4, 2427 (2014).

    Article  Google Scholar 

  2. J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, and F.S. Liu, J. Electron. Mater. 10, 2063 (2011).

    Article  Google Scholar 

  3. Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, and J.P. Tu, J. Appl. Phys. 92, 321 (2008).

    Article  Google Scholar 

  4. S.Y. Wang, W.J. Xie, H. Li, and X.F. Tang, Intermetallics 19, 1024 (2011).

    Article  Google Scholar 

  5. B. Poudel, Science 320, 634 (2008).

    Article  Google Scholar 

  6. F. Wu, H.Z. Song, F. Gao, W.Y. Shi, J.F. Jia, and X. Hu, J. Electron. Mater. 42, 1140 (2013).

    Article  Google Scholar 

  7. F. Wu, H.Z. Song, J.F. Jia, F. Gao, Y.J. Zhang, and X. Hu, Phys. Status Solidi A 210, 1183 (2013).

    Article  Google Scholar 

  8. W.Y. Shi, F. Wu, K.L. Wang, J.J. Yang, H.Z. Song, and X. Hu, J. Electron. Mater. 43, 3162 (2014).

    Article  Google Scholar 

  9. F. Wu, W.Y. Shi, and X. Hu, Electron. Mater. Lett. 11, 127 (2015).

    Article  Google Scholar 

  10. J.J. Yang, F. Wu, Z. Zhu, L. Yao, H.Z. Song, and X. Hu, J. Alloy. Compd. 619, 401 (2015).

    Article  Google Scholar 

  11. H. Chi, W. Liu, K. Sun, X.L. Su, G.Y. Wang, P Lôst’ák, V. Kucek, C. Drašar, and C. Uher, Phys. Rev. B 88, 045202 (2013)

  12. K. Kurosaki and S. Yamanaka, Phys. Status Solidi A 210, 82 (2013).

    Article  Google Scholar 

  13. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  14. Q. Zhao and Y.G. Wang, J. Alloy. Compd. 497, 57 (2010).

    Article  Google Scholar 

  15. Z. Wang, F.Q. Wang, H. Chen, L. Zhu, H.J. Yu, and X.Y. Jian, J. Alloy. Compd. 492, L50 (2010).

    Article  Google Scholar 

  16. H.L. Ni, X.B. Zhao, T.J. Zhu, X.H. Ji, and J.P. Tu, J. Alloy. Compd. 397, 317 (2005).

    Article  Google Scholar 

  17. M. Salavati-Niasari, M. Bazarganipour, and F. Davara, J. Alloy. Compd. 489, 530 (2010).

    Article  Google Scholar 

  18. H. He, D.B. Huang, X. Zhang, and G. Li, Solid State Commun. 152, 810 (2012).

    Article  Google Scholar 

  19. Y. Deng, C.W. Nan, G.D. Wei, L. Guo, and Y.H. Lin, Chem. Phys. Lett. 374, 410 (2003).

    Article  Google Scholar 

  20. Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhao, Mater. Chem. Phys. 103, 484 (2007).

    Article  Google Scholar 

  21. W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  22. Y.C. Dou, X.Y. Qin, D. Li, L.L. Li, T.H. Zou, and Q.Q. Wang, J. Appl. Phys. 114, 044906 (2013).

    Article  Google Scholar 

  23. S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 10136 (2015).

    Article  Google Scholar 

  24. W.J. Xie, J. He, S. Zhu, T. Holgate, S.Y. Wang, X.F. Tang, Q.J. Zhang, and T.M. Tritt, J. Mater. Res. 26, 1791 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Science and Technology Development Program of Henan Province of China (Grant No. 142102210043), Foundation of Henan Educational Committee (Grant Nos. 14A140017 and 16A140036), and the Dostdoctoral Program of Hanan Province of China (Grant No. 2014008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Z. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Wu, F., Wang, X.X. et al. Effects of Thallium Doping on the Transport Properties of Bi2Te3 Alloy. J. Electron. Mater. 45, 3053–3058 (2016). https://doi.org/10.1007/s11664-016-4396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4396-6

Keywords

Navigation