Skip to main content
Log in

Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries from Spent Mixed Alkaline Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

LiNi1/3Co1/3Mn1/3O2 cathode materials of lithium-ion batteries were successfully re-synthesized using mixed spent alkaline zinc-manganese batteries and spent lithium-ion batteries as the raw materials. These materials were synthesized by using a combination of dissolution, co-precipitation, calcination, battery preparation, and battery charge–discharge processes. The phase composition, morphology, and electrochemical performance of the products were determined by inductively coupled plasma optical emission spectroscopy, infrared spectra, x-ray diffraction, scanning electron microscopy–energy dispersive spectroscopy, and charge–discharge measurements. The results showed that LiNi1/3Co1/3Mn1/3O2 cathode materials could be successfully re-synthesized at optimal preparation conditions of: co-precipitation, pH value of 8, calcination temperature of 850°C, and calcination time of 10 h. Furthermore, the electrochemical results showed that the re-synthesized sample could deliver an initial discharge capacity of up to 160.2 mAh g−1 and Coulomb efficiency of 99.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, G.S. Zeng, S.L. Luo, X.R. Deng, and Q.J. Xie, J. Korean Soc. Appl. Biol. Chem. 56, 187 (2013).

    Article  Google Scholar 

  2. Y. Ma, Y. Cui, X.X. Zuo, S.N. Huang, K.S. Hu, X. Xiao, and J.M. Nan, Waste Manag. 34, 1793 (2014).

    Article  Google Scholar 

  3. D. Espinosa, A. Bernardes, and J. Tenório, J. Power Sources 135, 311 (2004).

    Article  Google Scholar 

  4. X.L. Zeng, J.H. Li, and Y.S. Ren, IEEE. I. Symp. Sustain. Syst. Technol. 1 (2012)

  5. G.X. Xi, M.X. Lu, and L. Yang, Environ. Prot. Chem. Ind. 25, 379 (2005).

    Google Scholar 

  6. L. Yang, G.X. Xi, and Y.B. X, Ceram. Int. 41, 11498 (2015)

  7. D. Lisbona and T. Snee, Process Saf. Environ. Prot. 89, 434 (2011).

    Article  Google Scholar 

  8. D.H.P. Kang, M. Chen, and O.A. Ogunseitan, Environ. Sci. Technol. 47, 5495 (2013).

    Article  Google Scholar 

  9. H. Aral and A. Vecchio-Sadus, Ecotoxicol. Environ. Saf. 70, 349 (2008).

    Article  Google Scholar 

  10. A. Babakhani, F. Rashchi, A. Zakeri, and E. Vahidi, J. Power Sources 247, 127 (2014).

    Article  Google Scholar 

  11. G. Belardi, F. Medici, and L. Pig, J. Power Sources 248, 1290 (2014).

    Article  Google Scholar 

  12. S.Y. Choi, V.T. Nguyen, J.C. Lee, H. Kang, and B.D. Pandey, J. Hazard. Mater. 278, 258 (2014).

    Article  Google Scholar 

  13. Y. Ma, Y. Cui, X.X. Zuo, S.N. Huang, K.S. Hu, X. Xiao, and J.M. Nan, Waste Manag. 34, 1793 (2014).

    Article  Google Scholar 

  14. W. Waag, C. Fleischer, and D.U. Sauer, J. Power Sources 258, 321 (2014).

    Article  Google Scholar 

  15. X.L. Zeng and J.H. Li, J. Hazard. Mater. 271, 50 (2014).

    Article  Google Scholar 

  16. M.V. Gallegos, L.R. Falco, M.A. Peluso, J.E. Sambeth, and H.J. Thomas, Waste Manag. 33, 1483 (2013).

    Article  Google Scholar 

  17. M. Buzatu, S.S. Aceanu, M.I. Petrescu, G.V. Ghica, and T. Buzatu, J. Power Sources 247, 612 (2014).

    Article  Google Scholar 

  18. C.H. Zhao, X.X. Wang, R. Liu, X.R. Liu, and Q. Shen, Ionics 20, 645 (2014).

    Article  Google Scholar 

  19. H. Liu, C. Chen, C.Y. Du, X.S. He, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, and Y.Z. Gao, J. Mater. Chem. A 3, 2634 (2015).

    Article  Google Scholar 

  20. Z.Y. Wang, E.Z. Liu, C.N. He, C.S. Shi, J.J. Li, and N.Q. Zhao, J. Power Sources 236, 25 (2013).

    Article  Google Scholar 

  21. J. Gao, Z.L. Huang, J.J. Li, X.M. He, and C.Y. Jiang, Ionics 20, 301 (2014).

    Article  Google Scholar 

  22. R.I. Eglitis and G. Borstel, Phys. Stat. Solidi (a) 202, R13 (2005).

    Article  Google Scholar 

  23. L. Li, X.X. Zhang, R.J. Chen, T.L. Zhao, J. Lu, F. Wu, and K. Amine, J. Power Sources 249, 28 (2014).

    Article  Google Scholar 

  24. R. Rácz and P. Ilea, Hydrometallurgy 139, 116 (2013).

    Article  Google Scholar 

  25. C.Y. Hu, J. Guo, J. Wen, and Y.X. Peng, J. Mater. Sci. Technol. 29, 215 (2013).

    Article  Google Scholar 

  26. J. Formanek, J. Jandova, and J. Capek, Hydrometallurgy 138, 100 (2013).

    Article  Google Scholar 

  27. M. Buzatu, S.S. Aceanu, M.I. Petrescu, G.V. Ghica, and T. Buzatu, J. Power Sources 247, 612 (2014).

    Article  Google Scholar 

  28. E. Gratz, Q. Sa, D. Apelian, and Y. Wang, J. Power Sources 262, 255 (2014).

    Article  Google Scholar 

  29. G.X. Xi, L. Yang, and M.X. Lu, Mater. Lett. 60, 3582 (2006).

    Article  Google Scholar 

  30. L. Yang, Q.H. Yan, G.X. Xi, L.Y. Niu, T.J. Lou, T.X. Wang, and X.S. Wang, J. Mater. Sci. 46, 6106 (2011).

    Article  Google Scholar 

  31. Z.Y. Wang, Y. Zhang, B.J. Chen, and C. Lu, J. Solid State Electrochem. 18, 1757 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxi Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xi, G. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries from Spent Mixed Alkaline Batteries. J. Electron. Mater. 45, 301–306 (2016). https://doi.org/10.1007/s11664-015-4067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4067-z

Keywords

Navigation