Skip to main content
Log in

Study on decrystallization of cathode material and decomposition of electrolyte in LiNi1/3Co1/3Mn1/3O2-based cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Decrystallization of cathode material and decomposition of electrolyte in LiNi1/3Co1/3Mn1/3O2-based cells are studied in this work. Surface morphology of the synthesized material is observed by scanning electron microscope (SEM). Initial charge–discharge capacities and cycling performance are measured in the voltage range of 2.75–4.30 V (vs. Li+/Li). The changes on crystal structure, surface elements of electrodes, and battery impedance are characterized by means of x-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS), respectively. The results show that the capacity fade is mainly caused by decrystallization of the cathode material and decomposition of electrolyte. During the cycling process, crystal structure is badly destroyed, degree of cation mixing increases, and amorphous phase forms, which will directly lead to the increase of irreversible capacity. Moreover, battery impedance will increase rapidly because the surface of electrode is covered and diffusion path of lithium ions is blocked by impurities generated from the decomposition of the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu MS, Chiang PCJ (2007) Electrochim Acta 52:3719–3725

    Article  CAS  Google Scholar 

  2. Ramadass P, Haran B, White R, Popov BN (2002) J Power Sources 112:606–613

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  4. Ahn D, Lee JG, Lee JS, Kim J, Cho J, Park B (2007) Curr Appl Phys 7:172–175

    Article  Google Scholar 

  5. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) J Power Sources 178:826–831

    Article  CAS  Google Scholar 

  6. Ning G, White RE, Popov BN (2006) Electrochim Acta 51:2012–2022

    Article  CAS  Google Scholar 

  7. Ramadass P, Haran B, White R, Popov BN (2003) J Power Sources 123:230–240

    Article  CAS  Google Scholar 

  8. Arora P, White RE (1998) J Electrochem Soc 145:3647–3667

    Article  CAS  Google Scholar 

  9. Ramadass P, Haran B, White R, Popov BN (2002) J Power Sources 112:614–620

    Article  CAS  Google Scholar 

  10. Zhang D, Haran BS, Durairajan A, White RE, Podrazhansky Y, Popov BN (2000) J Power Sources 91:122–129

    Article  CAS  Google Scholar 

  11. Wang F, Zhang Y, Zou JZ, Liu WJ, Chen YP (2013) J Alloys Compd 558:172–178

    Article  CAS  Google Scholar 

  12. Ohzuku T, Makimura Y (2001) Chem Lett 30:642–643

    Article  Google Scholar 

  13. Sinha NN, Munichandraiah N (2009) ACS Appl Mater Interfaces 1:1241–1249

    Article  CAS  Google Scholar 

  14. Käbitz S, Gerschler JB, Ecker M, Yurdagel Y, Emmermacher B, André D, Mitsch T, Sauer DU (2013) J Power Sources 239:572–583

    Article  Google Scholar 

  15. Zheng H, Sun Q, Liu G, Song X, Battaglia VS (2012) J Power Sources 207:134–140

    Article  CAS  Google Scholar 

  16. Kamel KB, Amdouni N, Ghany AA, Zaghib K, Mauger A, Gendron F, Julien CM (2008) Ionics 14:89–97

    Article  Google Scholar 

  17. Liao PY, Duh JG, Sheen SR (2005) J Electrochem Soc 152:A1695–A1700

    Article  CAS  Google Scholar 

  18. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Electrochim Acta 38:1159–1167

    Article  CAS  Google Scholar 

  19. Reimers JN, Rossen E, Jones CD, Dahn JR (1993) Solid State Ion 61:335–344

    Article  CAS  Google Scholar 

  20. Yang K, Fan LZ, Guo J, Qu X (2012) Electrochim Acta 63:363–368

    Article  CAS  Google Scholar 

  21. Huang ZL, Gao J, He XM, Li JJ, Jiang CY (2012) J Power Sources 202:284–290

    Article  CAS  Google Scholar 

  22. Zhang S (2007) Electrochim Acta 52:7337–7342

    Article  CAS  Google Scholar 

  23. Aurbach D, Markovsky B, Levi MD, Schechter A, Moshkovich M, Cohen Y (1999) J Power Sources 81–82:95–111

    Article  Google Scholar 

  24. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423–1439

    Article  CAS  Google Scholar 

  25. Liu H, Tan L (2011) Mater Chem Phys 129:729–732

    Article  CAS  Google Scholar 

  26. He YB, Ning F, Yang QH, Song QS, Li B, Su F, Du H, Tang ZY, Kang F (2011) J Power Sources 196:10322–10327

    Article  CAS  Google Scholar 

  27. Chen M, Du C, Song B, Xiong K, Yin G, Zuo P, Cheng X (2013) J Power Sources 223:100–106

    Article  CAS  Google Scholar 

  28. Ni J, Han Y, Gao L, Lu L (2013) Electrochem Commun 31:84–87

    Article  CAS  Google Scholar 

  29. Chen G, Wang Z, Xia D (2008) Chem Mater 20:6951–6956

    Article  CAS  Google Scholar 

  30. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  31. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by The National Basic Research Program of China (973 program no. 2013CB934700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhang, Y., Chen, B. et al. Study on decrystallization of cathode material and decomposition of electrolyte in LiNi1/3Co1/3Mn1/3O2-based cells. J Solid State Electrochem 18, 1757–1762 (2014). https://doi.org/10.1007/s10008-014-2419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2419-x

Keywords

Navigation