Skip to main content
Log in

Inserting Tin or Antimony Atoms into Mg2Si: Effect on the Electronic and Thermoelectric Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Density functional and Boltzmann transport theories have been used to investigate the effect of constraints generated by substituting tin for silicon atoms or by inserting antimony atoms into Mg2Si on the electronic and thermoelectric properties of this compound. The investigated hypothetical structures are Mg2Si1−x Sn x with x equal to 0.125, 0.25, 0.375, 0.625, 0.75, and 0.875, and Mg8Si4Sb, Mg8Si4Sb3, and Mg2SiSb. The transport properties are presented with respect to the energy at three predefined temperatures and with respect to temperature for low and high electron and hole dopings. The effects of Sn-for-Si substitution are very similar to those observed for Mg2Si subjected to uniaxial and biaxial tensile strains. Overall, the power factor decreases as the doping level or tensile strain increases. In contrast, the maximum of the power factor increases with temperature. Irrespective of the temperature and electron or hole doping levels, the electrical conductivity \(\sigma\) of the Sb-inserted Mg2Si structures is far higher than that of Mg2Si. In the Fermi level energy region, the Seebeck coefficient S of the Sb-inserted Mg2Si structures is lower than that of Mg2Si. For Mg8Si4Sb3 and Mg2SiSb, the opposite is observed in the region where the electron density is very small (about 2 eV below the Fermi level). As a consequence, the power factor follows the same trends as the Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  2. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  3. T. Sakamoto, T. Iida, N. Fukushima, Y. Honda, M. Tada, Y. Taguchi, Y. Mito, H. Taguchi, and Y. Takanashi, Thin Solid Films 519, 8528 (2011).

    Article  Google Scholar 

  4. M.I. Fedorov, V.K. Zaitsev, I.S. Eremin, E.A. Gurieva, A.T. Burkov, P.P. Konstantinov, M.V. Vedernikov, A.Y. Samunin, G.N. Isachenko, and A.A. Shabaldin, Phys. Solid State 48, 1486 (2006).

    Article  Google Scholar 

  5. D.A. Pshenai-Severin and M.I. Fedorov, Phys. Solid State 49, 1633 (2007).

    Article  Google Scholar 

  6. S.-M. Choi, K.-H. Kim, I.-H. Kim, S.-U. Kim, and W.-S. Seo, Curr. Appl. Phys. 11, S388 (2011).

    Article  Google Scholar 

  7. S.-W. You, K.-H. Park, I.-H. Kim, S.-M. Choi, W.-S. Seo, and S.-U. Kim, J. Electron. Mater. 41, 1675 (2012).

    Article  Google Scholar 

  8. S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M. Toprak, M. Fabrizio, and S. Barison, J. Electron. Mater. 42, 1956 (2013).

    Article  Google Scholar 

  9. J.J. Pulikkotil, D.J. Singh, S. Auluck, M. Saravanan, D.K. Misra, A. Dhar, and R.C. Budhani, Phys. Rev. B 86, 155204 (2012).

    Article  Google Scholar 

  10. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, Phys. Rev. B 85, 205212 (2012).

    Article  Google Scholar 

  11. K. Kutorasiński, J. Tobola, and S. Kaprzyk, Phys. Rev. B 87, 195205 (2013).

    Article  Google Scholar 

  12. J. Tani and H. Kido, Phys. B 364, 218 (2005).

  13. J. Tani and H. Kido, Intermetallics 15, 1202 (2007).

  14. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  Google Scholar 

  15. H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Compd. 509, 6503 (2011).

    Article  Google Scholar 

  16. H. Balout, P. Boulet, and M.-C. Record, Intermetallics 50, 8 (2014).

    Article  Google Scholar 

  17. Z. Du, J. Cui, T. Zhu, and X. Zhao, Phys. Status Solidi A 210, 2359 (2013).

    Article  Google Scholar 

  18. H.L. Gao, X.X. Liu, T.J. Zhu, S.H. Yang, and X.B. Zhao, J. Electron. Mater. 40, 830 (2011).

    Article  Google Scholar 

  19. M. Ioannou, G. Polymeris, E. Hatzikraniotis, A.U. Khan, K.M. Paraskevopoulos, and T. Kyratsi, J. Electron. Mater. 42, 1827 (2013).

    Article  Google Scholar 

  20. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, Proceedings of the 25th International Conference on Thermoelectrics 406 (2006).

  21. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  Google Scholar 

  22. P. Koenig, D.W. Lynch, and G.C. Danielson, J. Phys. Chem. Solids 20, 122 (1961).

    Article  Google Scholar 

  23. A. Stella, A.D. Brothers, H. Hopkings, and D.W. Lynch, Phys. Status Solidi 23, 697 (1967).

    Article  Google Scholar 

  24. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  25. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Cond. Matter 21, 395502 (2009).

  27. G.K.H. Madsen, K. Schwarz, P. Blaha, and D.J. Singh, Phys. Rev. B 68, 125212 (2003).

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  29. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  30. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  31. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  32. D. C. Wallace, In Solid State Phys, ed. F. Seitz and D. T. H. Ehrenreich (Academic Press, New York, vol. 25, p. 301, 1970).

  33. L. Fast, J.M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 17431 (1995).

    Article  Google Scholar 

  34. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  Google Scholar 

  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    Article  Google Scholar 

  36. H. Balout, P. Boulet, and M. C. Record, Eur. J. Phys. B (Submitted)

  37. H. Balout, P. Boulet, and M.-C. Record, J. Electron. Mater. 42, 3458 (2013).

    Article  Google Scholar 

  38. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  39. S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, and Y. Shinohara, J. Electron. Mater. 43, 1580 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was granted access to the HPC resources of CINES (Centre Informatique National de l’Enseignement Supérieur, Montpellier, France) under Allocation C2013086881 made by GENCI (Grand Equipment National de Calcul Intensif). This work was also supported by the computing facilities of the CRCMM (Centre Régional de Compétences en Modélisation Moléculaire de Marseille) and by the mésocentre d’Aix-Marseille Université (Project 13b020). The Fondation EADS is acknowledged for financial support of H.B.’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Boulet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balout, H., Boulet, P. & Record, MC. Inserting Tin or Antimony Atoms into Mg2Si: Effect on the Electronic and Thermoelectric Properties. J. Electron. Mater. 44, 4452–4464 (2015). https://doi.org/10.1007/s11664-015-3972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3972-5

Keywords

Navigation