Skip to main content
Log in

Sb Substitution Effect on Thermoelectric Properties of Mg2Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of Sb dopant on electronic and thermoelectric properties of Mg2Si (Mg2Si1−x Sb x , 0.125 ≤ x ≤ 0.5) have been studied using density functional theory and semiclassical Boltzmann transport theory. Classical kinetic theory was employed to calculate the lattice thermal conductivity. The calculations show that the Sb-doped Mg2Si system exhibits metallic nature and Sb enhances the thermoelectric efficiency of Mg2Si. Increase in the concentration of Sb leads to decrease in the Seebeck coefficient and increase in the electrical and electronic thermal conductivity as well as reduction in the lattice thermal conductivity. We found that the lattice thermal conductivity decreases with increase in temperature. There is little effect on the lattice thermal conductivity as the doping concentration is increased, but the overall thermal conductivity increases with increasing concentration due to increased electronic thermal conductivity. High ZT value of 0.47 is obtained at 1200 K for x = 0.125.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Research Council, National Academy of Engineering, National Academy of Sciences, America’s Energy Future Panel on Energy Efficiency Technologies, Real Prospects for Energy Efficiency in the United States (Washington: The National Academies Press, 2010).

  2. J. Yang, Thermoelectrics, ICT. 24th International Conference on Thermo electrics, (IEEE, 2005), p. 170..

  3. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  4. F.J. DiSalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  5. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, Taylor & Francis Group, 2006).

    Google Scholar 

  6. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  7. Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).

    Article  Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  9. Q. Guo, M. Chan, B.A. Kuropatwa, and H. Kleinke, Chem. Mater. 25, 4097 (2013).

    Article  Google Scholar 

  10. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).

    Article  Google Scholar 

  11. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, Y.A. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  12. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectric Handbook, Macro to Nano (Boca Raton: CRC Press, Taylor & Francis, 2006).

    Google Scholar 

  13. K. Kishida, A. Ishida, T. Koyama, S. Harada, N.L. Okamoto, K. Tanaka, and H. Inui, Acta Mater. 57, 2010 (2009).

    Article  Google Scholar 

  14. W.H. Luo, H. Li, Y.G. Yan, Z.B. Lin, X.F. Tang, Q.J. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  15. Z. Liu, M. Watanabe, and M. Hanabusa, Thin Solid Films 381, 262 (2001).

    Article  Google Scholar 

  16. V.E. Borisenko, Semiconducting Silicides (Berlin: Springer, 2000), pp. 1–79.

    Google Scholar 

  17. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  Google Scholar 

  18. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  19. Z. Yu, Q. Xie, Q. Xiao, and K. Zhao, Acta Phys. Sin. 58, 6889 (2009).

    Google Scholar 

  20. C. Li, Y. Wu, H. Li, and X. Liu, J. Alloys Compd. 477, 212 (2009).

    Article  Google Scholar 

  21. X. Wang, Y. Wang, J. Zou, T. Zhang, Z. Mei, Y. Guo, Q. Xue, X. Du, X. Zhang, X. Han, and Z. Zhang, Chin. Phys. B 18, 3079 (2009).

    Article  Google Scholar 

  22. K. Kaur and R. Kumar, Chin. Phys. B 5, 056401 (2016).

    Article  Google Scholar 

  23. J. Tani and H. Kido, Intermetallics 15, 1202 (2007).

    Article  Google Scholar 

  24. J. Tani and H. Kido, Phys. B 364, 218 (2005).

    Article  Google Scholar 

  25. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  26. J.-Y. Jung, K.-H. Park, and I.-H. Kim, IOP Conf. Ser. Mater. Sci. Eng. 18, 142006 (2011).

    Google Scholar 

  27. L.M. Zhang, C.B. Wang, H.Y. Jiang, and Q. Shen, in Proceedings of the 22nd International Conference on Thermoelectrics (ICT’03) (IEEE, 2003), p. 146.

  28. T. Kajikawa, K. Shida, K. Shiraishi, T. Ito, M. Ohmori, and T. Hirai, in Proceedings of the 17th International Conference on Thermoelectrics (ICT’98) (IEEE, 1998), p. 362.

  29. T. Dasgupta, C. Stiewe, R. Hassdorf, A.J. Zhou, L. Boettcher, and E. Mueller, Phys. Rev. B 83, 235207 (2011).

    Article  Google Scholar 

  30. M. Ioannou, G. Polymeris, E. Hartzikraniotis, A.U. Khan, K.M. Paraskevopoulos, and T.H. Kyratsi, J. Electron. Mater. 42, 7 (2013).

    Article  Google Scholar 

  31. H. Balout, P. Boulet, and M.C. Record, J. Electron. Mater. 44, 11 (2015).

    Article  Google Scholar 

  32. J.M. Ziman, Electrons and Phonons (Oxford: Oxford Classics Series, Clarendon, 2001).

    Book  Google Scholar 

  33. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  Google Scholar 

  34. K. Kaur and R. Kumar, Chin. Phys. B 2, 026402 (2016).

    Article  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3864 (1996).

    Article  Google Scholar 

  37. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  38. W. Jone and N.H. March, Theoretical Solid State Physics, vol. 1 (New York: Courier Corporation, 1985).

    Google Scholar 

  39. K.H. Madsen and J. Singh, Comput. Phys. Commun 175, 67 (2006).

    Article  Google Scholar 

  40. K.P. Ong, D. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).

    Article  Google Scholar 

  41. D.F. Zou, S.H. Xie, Y.Y. Liu, and J.G. Lin, J. Appl. Phys. 113, 193705 (2013).

    Article  Google Scholar 

  42. J. Sun and D.J. Singh, Phys. Rev. Appl 5, 024006 (2016).

    Article  Google Scholar 

  43. C. Kittel, Introduction to Solid State Physics, 7th ed. (Hoboken: Wiley, 2009).

    Google Scholar 

  44. S. Baroni, Theor. Comput. Methods Miner. Phys 71, 39 (2010).

    Google Scholar 

  45. J.M. Ziman, Electrons and Phonons (Oxford: Oxford university press, 1960), p. 451.

  46. R. Berman, Contemp. Phys. 14, 101 (1973).

    Article  Google Scholar 

  47. N. Farahi, M. VanZant, J. Zhao, J.S. Tse, S. Prabhudev, G.A. Botton, J.R. Salvador, F. Borondics, Z. Liu, and H. Kleinke, Dalton Trans. 43, 14983 (2014).

    Article  Google Scholar 

  48. H.J. Goldsmid, Electron. Refrig. 2, 36 (1998).

    Google Scholar 

  49. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).

    Article  Google Scholar 

  50. R.J. LaBotz, D.R. Mason, and D.F. O’Kane, J. Electrochem. Soc. 110, 127 (1963).

    Article  Google Scholar 

  51. Y. Noda, H. Kon, Y. Furukawa, and N. Otsuka, Mater. Trans. JIM 33, 851 (1992).

    Article  Google Scholar 

  52. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, in Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria; IEEE Catalog No. 06TH8931 (2006), p 406.

  53. Q. Zhang, J. He, T. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  54. W. Liu, X.F. Tang, and J. Sharp, J. Phys. D Appl. Phys. 43, 085406 (2010).

    Article  Google Scholar 

  55. J. Tobola, S. Kaprzyk, and H. Scherrer, J. Electron. Mater. 39, 9 (2009).

    Google Scholar 

  56. R.J. LaBoltz and D.R. Mason, J. Electrochem. Soc. 110, 121 (1963).

    Article  Google Scholar 

  57. K. Kambe and H. Udono, J. Electron. Mater. 43, 2212 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulwinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Kumar, R. Sb Substitution Effect on Thermoelectric Properties of Mg2Si. J. Electron. Mater. 46, 4682–4689 (2017). https://doi.org/10.1007/s11664-017-5482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5482-0

Keywords

Navigation