Skip to main content
Log in

Effect of Biaxial Strain on Electronic and Thermoelectric Properties of Mg2Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic and thermoelectric properties of biaxially strained magnesium silicide Mg2Si are analyzed by means of first-principle calculations and semiclassical Boltzmann theory. Electron and hole doping are examined for different doping concentrations and temperatures. Under strain the degeneracy of the electronic orbitals near the band edges is removed, the orbital bands are warped, and the energy gap closes up. These characteristics are rationalized in the light of the electron density transfers upon strain. The electrical conductivity increases with the biaxial strain, whereas neither the Seebeck coefficient nor the power factor (PF) follow this trend. Detailed analysis of the evolution of these thermoelectric properties is given in terms of the in-plane and cross-plane components. Interestingly, the maximum value of the PF is shifted towards lower temperatures when increasingly intensive strain is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Boulet and M.C. Record, Int. J. Nanotechnol. 9, 368 (2012).

    Article  CAS  Google Scholar 

  2. R.Z. Zhang, C.L. Wang, J.C. Li, W.B. Su, J.L. Zhang, M.L. Zhao, J. Liu, Y.F. Zhang, and L.M. Mei, Solid State Sci. 12, 1168 (2010).

    Article  CAS  Google Scholar 

  3. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  CAS  Google Scholar 

  4. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  5. M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev, and E. Goranova, Phys. Rev. B 72, 115330 (2005).

    Article  Google Scholar 

  6. W. Liu, X. Tang, and J. Sharp, J. Phys. Appl. Phys. 43, 085406 (2010).

    Article  Google Scholar 

  7. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samuni, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  8. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  9. W. Xi-Na, W. Yong, Z. Jin, Z. Tian-Chong, M. Zeng-Xia, G. Yang, X. Qi-Kun, D. Xiao-Long, Z. Xia-Na, H. Xiao-Dong, and Z. Ze, Chin. Phys. B 18, 3079 (2009).

    Article  Google Scholar 

  10. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  CAS  Google Scholar 

  11. B. Yu, D. Chen, Q. Tang, C. Wang, and D. Shi, J. Phys. Chem. Solids 71, 758 (2010).

    Article  CAS  Google Scholar 

  12. T. Koga, T.C. Harman, S.B. Cronin, and M.S. Dresselhaus, Phys. Rev. B 60, 14286 (1999).

    Article  CAS  Google Scholar 

  13. T. Koga, X. Sun, S.B. Cronin, and M.S. Dresselhaus, Appl. Phys. Lett. 75, 2438 (1999).

    Article  CAS  Google Scholar 

  14. N.F. Hinsche, I. Mertig, and P. Zahn, J. Phys.: Condens. Matter 23, 295502 (2011).

    Article  CAS  Google Scholar 

  15. M.O. Baykan, S.E. Thompson, and T. Nishida, J. Appl. Phys. 108, 093716 (2010).

    Article  Google Scholar 

  16. P. Villars, and K. Cenzual, Pearson Crystal’s dataCrystal Structure Database for inorganic compound (Materials Park, OH: ASM International, 2010/2011).

  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  18. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter. 21, 2009 (395502).

    Google Scholar 

  20. G.K.H. Madsen, K. Schwarz, P. Blaha, and D.J. Singh, Phys. Rev. B 68, 125212 (2003).

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  23. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford: Clarendon, 1971), p. 47.

    Google Scholar 

Download references

Acknowledgements

Part of the computations were performed at the Mésocentre d’Aix-Marseille Université (Project Number 13b020). This work was also granted access to the HPC resources of Centre Informatique National de l’Enseignement Supérieur (CINES), Montpellier, France under allocation C2013086881 made by Grand Equipement National de Calcul Intensif (GENCI). The authors are grateful to the EADS foundation for funding Hilal Balout’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Boulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balout, H., Boulet, P. & Record, MC. Effect of Biaxial Strain on Electronic and Thermoelectric Properties of Mg2Si. J. Electron. Mater. 42, 3458–3466 (2013). https://doi.org/10.1007/s11664-013-2793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2793-7

Keywords

Navigation