Skip to main content
Log in

Structural, Optical, and Electrical Properties of SnS:Ag Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of silver concentration was investigated for doped tin sulfide thin films for which y = [Ag]/[Sn] = 0, 2, 4, 6, 8, and 10 at.%. Structural, morphological, optical, and electrical properties were studied by use of x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, spectrophotometry, and thermally stimulated current (TSC) spectroscopy. XRD analysis confirmed previous results, i.e. formation of a rocksalt structure with (111) and (200) as preferred orientations. Crystal quality was enhanced when the doping ratio was y = 4 at.%. Addition of silver to the deposited solution did not affect the crystal structure, because no secondary phases related to silver were observed, but it assisted grain growth up to the optimum ratio of 4 at.%. Below 6 at.% interference fringes were observed in transmission and reflection spectra, indicating good surface homogeneity. The optical bandgap energy decreased and the grain size increased when the doping level was y = 4 at.%. The envelope method was applied to the thin film doped at 4 at.%, and dispersion constants were determined by use of the Wemple and Spitzer–Fan models. TSC measurements indicated that the electrical properties at ambient temperature were governed by traps located in the bandgap. From Arrhenius plots, the activation energies of the trap levels were estimated to be approximately 0.28 eV and 1.3 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Devika, N.K. Reddy, and K.R. Gunasekhar, Thin Solid Films 520, 628 (2011).

    Article  Google Scholar 

  2. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011).

    Article  Google Scholar 

  3. N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov, and O. Volobujeva, J. Mater. Sci. 24, 4739 (2013).

    Google Scholar 

  4. V. Robles, J.F. Trigo, C. Guillén, and J. Herrero, J. Mater. Sci. 48, 3943 (2013).

    Article  Google Scholar 

  5. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, J. Mater. Sci. 47, 1365 (2012).

    Article  Google Scholar 

  6. M. Reghima, A. Akkari, M. Castagné, and N. Kamoun-Turki, J. Renew. Sustain. Energy 4, 011602 (2012).

    Article  Google Scholar 

  7. M. Reghima, A. Akkari, C. Guasch, M. Castagné, and N. Kamoun-Turki, J. Renew. Sustain. Energy 5, 063109 (2013).

    Article  Google Scholar 

  8. M. Reghima, A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Electron. Mater. 43, 3138 (2014).

    Article  Google Scholar 

  9. R. Mariappan, T. Mahalingam, and V. Ponnuswamy, Optik 122, 2216 (2011).

    Article  Google Scholar 

  10. P. Lu, H. Jia, and S. Cheng, Adv. Mater. Res. 60–61, 11 (2009).

    Article  Google Scholar 

  11. T.H. Sajeesh, A.S. Cherian, C.S. Kartha, and K.P. Vijayakumar, Energy Procedia 15, 325 (2012).

    Article  Google Scholar 

  12. K.S. Kumar, C. Manoharan, S. Dhanapandian, and A.G. Manohari, Spectrochim. Acta A 115, 840 (2013).

    Article  Google Scholar 

  13. M. Devika, N.K. Reddy, M. Prashantha, K. Ramesh, S.V. Reddy, Y.B. Hahn, and K.R. Gunasekhar, Phys. Status Solidi A 207, 1864 (2010).

    Article  Google Scholar 

  14. M. Devika, N.K. Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, and K.T.R. Reddy, J. Electrochem. Soc. 153, G727 (2006).

    Article  Google Scholar 

  15. B. Ghosh, M. Das, P. Banerjee, and S. Das, Appl. Surf. Sci. 254, 6436 (2008).

    Article  Google Scholar 

  16. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 7421 (2011).

    Article  Google Scholar 

  17. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon, Phys. Lett. 102, 053901 (2013).

    Google Scholar 

  18. K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).

    Article  Google Scholar 

  19. Y. Yongli and C. Shuying, J. Semicond. 29, 2322 (2008).

    Google Scholar 

  20. K.S. Kumar, A.G. Manohari, S. Dhanapandian, and T. Mahalingam, Mater. Lett. 131, 167 (2014).

    Article  Google Scholar 

  21. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, Adv. Mater. Res. 324, 101 (2011).

    Article  Google Scholar 

  22. A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Alloys Compd. 490, 180 (2010).

    Article  Google Scholar 

  23. M. Ajili, M. Castagné, and N. KamounTurki, Superlattices Microstruct. 53, 213 (2013).

    Article  Google Scholar 

  24. Y.-H. Ge, Y.-Y. Guo, W.-M. Shi, and Y.-H. Qiu, J. Shanghai Univ. 11, 403 (2007).

    Article  Google Scholar 

  25. P. Jain and P. Arun, J. Semicond. 34, 093004 (2013).

    Article  Google Scholar 

  26. H. Khallaf, G. Chai, O. Lupan, L. Chow, H. Heinrich, S. Park, and A. Schulte, Phys. Status Solidi A 206, 256 (2009).

    Article  Google Scholar 

  27. A. Akkari, C. Guasch, M. Castagne, and N. Kamoun-Turki, J. Mater. Sci. 46, 6285 (2011).

    Article  Google Scholar 

  28. A. Jebali, M.B. Rabeh, N. Khemiri, and M. Kanzari, Mater. Res. Bull. 61, 363 (2015).

    Article  Google Scholar 

  29. J.F. Trigo, B. Asenjo, J. Herrero, and M.T. Gutiérrez, Sol. Energy Mater. Sol. Cells 92, 1145 (2008).

    Article  Google Scholar 

  30. P.A. Nwofe, K.T.R. Reddy, J.K. Tan, I. Forbes, and R.W. Miles, Phys. Procedia 25, 150 (2012).

    Article  Google Scholar 

  31. A.E. Abdelrahman, W.M.M. Yunus, A.K. Arof, and J. Non-Cryst, Solids 358, 1447 (2012).

    Google Scholar 

  32. E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, and C. Gumus, Chalcogenide Lett. 7, 685 (2010).

    Google Scholar 

  33. T.H. Sajeesh, K.B. Jinesh, M. Rao, K.C. Kartha, and K.P. Vijayakumar, Status Solidi A 209, 1274 (2012).

    Article  Google Scholar 

  34. S.A. Vanalakar, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, K.V. Gurav, P.S. Patil, and J.H. Kim, Ceram. Int. 40, 15097 (2014).

    Article  Google Scholar 

  35. M. Reghima, A. Akkari, C. Guasch, and N. Turki-Kamoun, J. Renew. Sustain. Energy 7, 023128 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Reghima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reghima, M., Akkari, A., Guasch, C. et al. Structural, Optical, and Electrical Properties of SnS:Ag Thin Films. J. Electron. Mater. 44, 4392–4399 (2015). https://doi.org/10.1007/s11664-015-3971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3971-6

Keywords

Navigation