Skip to main content
Log in

Optoelectronic and structural properties of multilayer oxide/silver/oxide transparent conducting electrodes using green laser annealing

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transparent conducting ITO/Ag/ITO (IAI) and AZO/Ag/AZO (ZAZ) multilayer electrodes were fabricated using radio frequency magnetron sputtering at room temperature. Subsequently, a green laser was employed for annealing these multilayer films to improve their optical, electrical, and structural properties. Their optical and electrical properties were characterized using a UV–Vis spectrophotometer, and a four-point probe station, respectively, while structural properties were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). After laser annealing, XRD analysis indicated an increase in Ag intensity peak, correlating with larger crystallite size post-annealing. TEM analysis confirmed the formation of a continuous structure as weakly connected Ag crystallites bonded during the annealing process. The IAI electrodes showed significant improvement, reducing sheet resistance from 8.2 Ω/sq to 6.9 Ω/sq, and the Haacke index improved from ϕVis ≈ 17 × 10−3 Ω−1 to ϕVis ≈ 21 × 10−3 Ω−1. In contrast, the physical properties of the ZAZ electrodes could not be further improved by the laser annealing process, as their Ag layers already exhibited high crystallinity. Our results indicate that optimizing the conductivity of the Ag layer is crucial for the optoelectronic performance of multilayer electrodes. This optimization can be achieved through laser annealing with suitable energy densities and using oxide layers promoting dense Ag growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.-N. Cui, S.-Q. Xi, Thin Solid Films 288, 325–329 (1996)

    Article  ADS  Google Scholar 

  2. Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Thin Solid Films 411, 12–16 (2002)

    Article  ADS  Google Scholar 

  3. X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, E.F. Schubert, Jpn. J. Appl. Phys. 48, 120203 (2009)

    Article  ADS  Google Scholar 

  4. U. Betz, M.K. Olsson, J. Marthy, M.F. Escolá, F. Atamny, Surf. Coat. Technol. 200, 5751–5759 (2006)

    Article  Google Scholar 

  5. X. Zhou, J. Xu, L. Yang, G. Zhu, Z. Yu, J. Mater. Sci. Mater. Electron. 26, 6954–6960 (2015)

    Article  Google Scholar 

  6. S.J. Lee, S.H. Lee, H.W. Kang, S. Nahm, B.H. Kim, H. Kim, S.H. Han, Chem. Eng. J. 416, 129028 (2021)

    Article  Google Scholar 

  7. F. Djeffal, H. Ferhati, A. Benhaya, A. Bendjerad, Superlattices Microstruct. 130, 361–368 (2019)

    Article  ADS  Google Scholar 

  8. N.-F. Ren, L.-J. Huang, M. Zhou, B.-J. Li, Ceram. Int. 40, 8693–8699 (2014)

    Article  Google Scholar 

  9. F. Li, Y. Zhang, C. Wu, Z. Lin, B. Zhang, T. Guo, Vacuum 86, 1895–1897 (2012)

    Article  ADS  Google Scholar 

  10. H. Ferhati, F. Djeffal, A. Benhaya, Superlattices Microstruct. 129, 176–184 (2019)

    Article  ADS  Google Scholar 

  11. Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard, V.-V. Truong, Thin Solid Films 293, 108–112 (1997)

    Article  ADS  Google Scholar 

  12. G.S. Belo, B.J.P. da Silva, E.A. de Vasconcelos, W.M. de Azevedo, E.F. da Silva Jr, Appl. Surf. Sci. 255, 755–757 (2008)

    Article  ADS  Google Scholar 

  13. J. George, C.S. Menon, Surf. Coat. Technol. 132, 45–48 (2000)

    Article  Google Scholar 

  14. E. Benamar, M. Rami, C. Messaoudi, D. Sayah, A. Ennaoui, Sol. Energy Mater. Sol. Cells 56, 125–139 (1999)

    Article  Google Scholar 

  15. J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, Appl. Surf. Sci. 252, 4834–4837 (2006)

    Article  ADS  Google Scholar 

  16. T. Maruyama, K. Fukui, J. Appl. Phys. 70, 3848 (1991)

    Article  ADS  Google Scholar 

  17. Y.S. Jung, D.W. Lee, D.Y. Jeon, Appl. Surf. Sci. 221, 136–142 (2004)

    Article  ADS  Google Scholar 

  18. K. Sreenivas, T.S. Rao, A. Mansingh, J. Appl. Phys. 57, 384 (1985)

    Article  ADS  Google Scholar 

  19. E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, I. Porqueras, Solid State Ion. 165, 139–148 (2003)

    Article  Google Scholar 

  20. W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)

    Article  ADS  Google Scholar 

  21. M. Girtan, Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)

    Article  Google Scholar 

  22. P. Lei, X. Chen, Y. Yan, X. Zhang, C. Hao, J. Peng, J. Ji, Y. Zhong, J. Electron. Mater. 51, 2645–2651 (2022)

    Article  ADS  Google Scholar 

  23. C. Guillén, J. Herrero, Opt. Commun. 282, 574–578 (2009)

    Article  ADS  Google Scholar 

  24. K.-M. Lin, R.-L. Lin, W.-T. Hsiao, Y.-C. Kang, C.-Y. Chou, Y.-Z. Wang, J. Mater. Sci. Mater. Electron. 28, 12363–12371 (2017)

    Article  Google Scholar 

  25. M. Rajendran, C.-E. Huang, K.-M. Lin, Mod. Phys. Lett. B 36, 2242009 (2022)

    Article  ADS  Google Scholar 

  26. C.H. Hong, Y.J. Jo, H.A. Kim, I.-H. Lee, J.S. Kwak, Thin Solid Films 519, 6829–6833 (2011)

    Article  ADS  Google Scholar 

  27. C. Guillén, J. Herrero, Sol. Energy Mater. Sol. Cells 92, 938–941 (2008)

    Article  Google Scholar 

  28. L.L. Yang, D. Ge, H. Wei, F. He, X.D. He, Appl. Surf. Sci. 255, 8197–8201 (2009)

    Article  ADS  Google Scholar 

  29. K.-M. Lin, S. Shinde, J. Mater. Sci. Mater. Electron. 32, 5690–5697 (2021)

    Article  Google Scholar 

  30. Y.S. Kim, J.H. Park, D.H. Choi, H.S. Jang, J.H. Lee, H.J. Park, J.I. Choi, D.H. Ju, J.Y. Lee, D. Kim, Appl. Surf. Sci. 254, 1524–1527 (2007)

    Article  ADS  Google Scholar 

  31. J.C. Kim, C.H. Shin, C.W. Jeong, Y.J. Kwon, J.H. Park, D. Kim, Nucl. Instrum. Methods Phys. Res. B 268, 131–134 (2010)

    Article  ADS  Google Scholar 

  32. K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim, Thin Solid Films 341, 152–155 (1999)

    Article  ADS  Google Scholar 

  33. S. Arai, T. Kikuhara, M. Shimizu, M. Horita, Mater. Lett. 303, 130504 (2021)

    Article  Google Scholar 

  34. J.H. Kim, T.-W. Kang, S.-N. Kwon, S.-I. Na, Y.-Z. Yoo, H.-S. Im, T.-Y. Seong, J. Electron. Mater. 46, 306–311 (2017)

    Article  ADS  Google Scholar 

  35. B.-J. Li, M. Zhou, M. Ma, W. Zhang, W.-Y. Tang, Appl. Surf. Sci. 265, 637–641 (2013)

    Article  ADS  Google Scholar 

  36. Q. Xu, R.D. Hong, H.L. Huang, Z.F. Zhang, M.K. Zhang, X.P. Chen, Z.H.Y. Wu, Opt. Laser Technol. 45, 513–517 (2013)

    Article  ADS  Google Scholar 

  37. H. Pan, D. Lee, S.H. Ko, C.P. Grigoropoulos, H.K. Park, T. Hoult, Appl. Phys. A 104, 29–38 (2011)

    Article  ADS  Google Scholar 

  38. M.-F. Chen, K.-M. Lin, Y.-S. Ho, Opt. Lasers Eng. 50, 491–495 (2012)

    Article  Google Scholar 

  39. N.-F. Ren, W.-Z. Wang, B.-J. Li, L.-J. Huang, Y. Zhang, J. Mater. Sci. Mater. Electron. 32, 10644–10661 (2021)

    Article  Google Scholar 

  40. H.J. Kim, M.-J. Maeng, J.H. Park, M.G. Kang, C.Y. Kang, Y. Park, Y.J. Chang, Curr. Appl. Phys. 19, 168–173 (2019)

    Article  ADS  Google Scholar 

  41. W. Chung, M.O. Thompson, P. Wickboldt, D. Toet, P.G. Carey, Thin Solid Films 460, 291–294 (2004)

    Article  ADS  Google Scholar 

  42. C.-F. Ding, W.-T. Hsiao, H.-T. Young, Ceram. Int. 45, 16387–16398 (2019)

    Article  Google Scholar 

  43. G. Jo, J.-H. Ji, K. Masao, J.-G. Ha, S.-K. Lee, J.-H. Koh, Ceram. Int. 44, S211–S215 (2018)

    Article  Google Scholar 

  44. M. Rajendran, K.-M. Lin, W.-T. Hsiao, Mod. Phys. Lett. B 37, 2340036 (2023)

    Article  ADS  Google Scholar 

  45. H.J. Cho, S.U. Lee, B. Hong, Y.D. Shin, J.Y. Ju, H.D. Kim, M. Park, W.S. Choi, Thin Solid Films 518, 2941–2944 (2010)

    Article  ADS  Google Scholar 

  46. M. Li, Y. Wang, Y. Wang, X. Wei, Ceram. Int. 43, 15442–15446 (2017)

    Article  Google Scholar 

  47. B. Barman, S.K. Swami, V. Dutta, Mater. Sci. Semicond. Process. 129, 105801 (2021)

    Article  Google Scholar 

  48. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  ADS  Google Scholar 

  49. M. Mohamedi, F. Challali, T. Touam, M. Konstantakopoulou, V. Bockelée, D. Mendil, S. Ouhenia, D. Djouadi, A. Chelouche, Appl. Phys. A 129, 545 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author extends gratitude to Dr. Wen-Tse Hsiao from the Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 30076, Taiwan, for their assistance in laser annealing and TEM investigation. The authors also acknowledge the financial support provided by the National Science and Technology Council of Taiwan R.O.C., under grant numbers (NSTC 111-2221-E-218-015 and 112-2221-E-218-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keh-Moh Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, M., Lin, KM. Optoelectronic and structural properties of multilayer oxide/silver/oxide transparent conducting electrodes using green laser annealing. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01074-y

Keywords

Navigation