Skip to main content
Log in

The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the performance of three microalloyed Sn-Ag-Cu solder interconnection compositions (Sn-3.1Ag-0.52Cu, Sn-3.0Ag-0.52Cu-0.24Bi, and Sn-1.1Ag-0.52Cu-0.1Ni) was compared under mechanical shock loading (JESD22-B111 standard) and cyclic thermal loading (40 ± 125°C, 42 min cycle) conditions. In the drop tests, the component boards with the low-silver nickel-containing composition (Sn-Ag-Cu-Ni) showed the highest average number of drops-to-failure, while those with the bismuth-containing alloy (Sn-Ag-Cu-Bi) showed the lowest. Results of the thermal cycling tests showed that boards with Sn-Ag-Cu-Bi interconnections performed the best, while those with Sn-Ag-Cu-Ni performed the worst. Sn-Ag-Cu was placed in the middle in both tests. In this paper, we demonstrate that solder strength is an essential reliability factor and that higher strength can be beneficial for thermal cycling reliability but detrimental to drop reliability. We discuss these findings from the perspective of the microstructures and mechanical properties of the three solder interconnection compositions and, based on a comprehensive literature review, investigate how the differences in the solder compositions influence the mechanical properties of the interconnections and discuss how the differences are reflected in the failure mechanisms under both loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Karppinen, T.T. Mattila, J. Li, and M. Paulasto-Kröckel, Microelectron. Reliab. 50, 1994–2000 (2010).

    Article  Google Scholar 

  2. E. Suhir, C.P. Wong, and Y.C. Lee, Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, vols. 1 and 2 (New York: Springer, 2007), 725 + 735 p.

  3. C. Zardini and G. Grossmann, The ELFNET Book on Failure Mechanisms, Testing Methods and Quality Issues of Lead Free Solder (London: Springer, 2011), 313 p.

  4. E. Suhir, X. Yu, and D. Steinberg, Structural Dynamics of Micro- and Opto-Electronic Systems, (Hoboken, NJ: Wiley, 2011), 598 p.

  5. T.T. Mattila, L. Vajavaara, J. Hokka, E. Hussa, M. Mäkelä, and V. Halkola, Microelectron. Reliab. 54, 601–609 (2014).

    Article  Google Scholar 

  6. T.T. Mattila and M. Paulasto-Kröckel, Microelectron. Reliab. 51, 1077–1091 (2011).

    Article  Google Scholar 

  7. T. Eckert, M. Krüger, W.H. Müller, N.F. Nissen, and H. Reichl, The Proceedings of the 60th Electronic Component and Technology Conference, (Las Vegas, NV: IEEE/EIA CPMT, June 1–4, 2010), pp. 1209–1216.

  8. A. E. Perkins (Doctoral thesis, Georgia Institute of Technology, Atlanta, GA, 2007).

  9. H. Qi (Doctoral thesis, University of Maryland, College Park, MD, 2006).

  10. T.K. Lee, C.U. Kim, and T.R. Bieler, J. Electron. Mater. 43, 69–79 (2014).

    Article  Google Scholar 

  11. T. T. Mattila, T. Laurila, and J. K. Kivilahti, Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, vol. 1, ed. E. Suhir, C.P. Wong, and Y.C. Lee (New York: Springer, 2007), pp. 313–350.

  12. T.T. Mattila, V. Vuorinen, and J.K. Kivilahti, J. Mater. Res. 19, 3214–3223 (2004).

    Article  Google Scholar 

  13. A. LaLonde, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, and D.W. Henderson, J. Electron. Mater. 33, 1545–1549 (2004).

    Article  Google Scholar 

  14. D. Henderson, J.J. Woods, T.A. Gosseling, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, and K.J. Puttliz, J. Mater. Res. 19, 1608–1612 (2004).

    Article  Google Scholar 

  15. S. Terashima and M. Tanaka, Mater. Trans. 45, 681–688 (2004).

    Article  Google Scholar 

  16. S.K. Kang, P.A. Lauro, D.-Y. Shih, D.W. Henderson, and K.J. Puttlitz, IBM J. Res. Dev. 49, 607–620 (2005).

    Article  Google Scholar 

  17. A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman, Y. Xing, and E.J. Cotts, J. Electron. Mater. 33, 1412–1423 (2004).

    Article  Google Scholar 

  18. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429–1439 (2004).

    Article  Google Scholar 

  19. H.T. Chen, M. Mueller, T.T. Mattila, J. Li, X.W. Liu, K.-J. Wolter, and M. Paulasto-Kröckel, J. Mater. Res. 26, 2103–2116 (2011).

    Article  Google Scholar 

  20. T. T. Mattila and J. K. Kivilahti, Recrystallization, ed. K. Sztwiertnia (Intech Open Access Publishing, 2012), ISBN 979-953-307-346-9, pp. 179–206.

  21. U. Sahaym, B. Talebanpour, S. Seekins, I. Dutta, P. Kumar, and P. Borgesen, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 1868–1875 (2013).

    Article  Google Scholar 

  22. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, and T.-K. Lee, J. Electron. Mater. 41, 283–301 (2012).

    Article  Google Scholar 

  23. D. Hardwick, C.M. Sellars, and W.J.Mc.G. Tegart, J. Inst. Met. 90, 21–22 (1961).

    Google Scholar 

  24. D. McLean and M.H. Farmer, J. Inst. Met. 85, 41–50 (1956).

    Google Scholar 

  25. S. Bergman and K.N. Subramanian, J. Mater. Sci. Mater. Electron. 23, 1442–1448 (2012).

    Article  Google Scholar 

  26. C.-T. Lim, C.W. Ang, L.B. Tan., S.K. W. Seah, and E.H. Wong, The Proceedings of the 53rd Electronic Components and Technology Conference (New Orleans, LA: IEEE/EIA CPMT, May 27–30, 2003), pp. 113–120.

  27. L.B. Tan, C.W. Ang, C.T. Lim, V.B.C. Tan, and X. Zhang, The Proceedings of the 55th Electronic Component and Technology Conference (Lake Buena Vista, FL: IEEE/EIA CPMT, May 31–June 3, 2005), pp. 645–653.

  28. T.T. Mattila, L. Vajavaara, J. Hokka, E. Hussa, M. Mäkelä, and V. Halkola, The Proceedings of the 63rd Electronic Component and Technology Conference (Las Vegas, NV: IEEE CPMT, May 28–31, 2013), pp. 1259–1268.

  29. P. Marjamäki, (Doctoral dissertation, Helsinki University of Technology, Otamedia, 148 p).

  30. T.O. Reinikainen, P. Marjamäki, and J.K. Kivilahti, The Proceedings of the 6th EuroSimE Conference (Berlin, Germany: IEEE, April 18–20, 2005), pp. 91–98.

  31. R. Nikander (Espoo, Master’s thesis, Helsinki University of Technology, 1999, p. 79).

  32. T. Reinikainen and J.K. Kivilahti, Metallurg. Mater. Trans. A 30, 123–132 (1999).

    Article  Google Scholar 

  33. T.T. Mattila, P. Marjamäki, and J.K. Kivilahti, IEEE Trans. Compon. Packag. Technol. 29, 787–795 (2006).

    Article  Google Scholar 

  34. T.T. Mattila and J.K. Kivilahti, J. Electron. Mater. 35, 250–255 (2006).

    Article  Google Scholar 

  35. K.-W. Moon, W.J. Boettinger, U.R. Kattner, C.A. Handwerker, and D.-J. Lee, J. Electron. Mater. 30, 45–52 (2001).

    Article  Google Scholar 

  36. X. Zeng, J. Alloys Compd. 348, 184–188 (2003).

    Article  Google Scholar 

  37. L. Xiao, J. Liu, Z. Lai, L. Ye, and A. Thölén, The Proceedings of 6th International Symposium on Advanced Packaging Materials (Braselton, GA: IEEE, March 6–8, 2000), pp. 145–151.

  38. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001).

    Article  Google Scholar 

  39. J. Zhao, L. Qi, Z.-M. Wang, and L. Wang, J. Alloys Compd. 375, 196–201 (2004).

    Article  Google Scholar 

  40. K. Tateyama, H. Ubukata, Y. Yamaoka, K. Takahashi, H. Yamada, and M. Saito, Int. J. Microcircuits Electron. Packag. 23, 131–137 (2000).

    Google Scholar 

  41. Y. Kariya and M. Otsuka, J. Electron. Mater. 28, 1229–1235 (1998).

    Article  Google Scholar 

  42. Z. Li, Z. Cao, S. Knott, A. Mikula, Y. Du, and Z. Qiao, Comput. Coupling Phase Diagr. Thermochem. 32, 152–163 (2008).

    Article  Google Scholar 

  43. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, J. Electron. Mater. 31, 456–465 (2002).

    Article  Google Scholar 

  44. Q. Yu and M. Shiratori, The Proceedings of the 11th International Workshop on Thermal Investigations of ICs and Systems (THERMIC), (Belgitare, Italy: IEEE/CPMT, September 27–30, 2005, pp. 204–211.

  45. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, and M.N. Islam, J. Alloys Compd. 407, 208–214 (2006).

    Article  Google Scholar 

  46. E. Hodulova, M. Palcut, E. Lechovic, B. Simekova, and K. Ulrich, J. Alloys Compd. 509, 7052–7059 (2011).

    Article  Google Scholar 

  47. J.-L. Jo, S. Nagao, K. Hamasaki, M. Tsujimoto, T. Sugahara, and K. Suganuma, J. Electron. Mater. 43, 1–8 (2014).

    Article  Google Scholar 

  48. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 28, 1138–1143 (1999).

    Article  Google Scholar 

  49. C.-W. Hwang, J.-G. Lee, K. Suganuma, and H. Mori, J. Electron. Mater. 32, 52–62 (2003).

    Article  Google Scholar 

  50. Z. Moser, W. Gąsior, K. Bukat, J. Pstruś, R. Kisiel, J. Sitek, K. Ishida, and I. Ohnuma, J. Phase Equilib. Diffus. 27, 133–139 (2006).

    Google Scholar 

  51. W.Q. Peng, (Licentiate thesis, Helsinki University of Technology, 2001, 124 p).

  52. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122–1136 (2000).

    Article  Google Scholar 

  53. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226–236 (2003).

    Article  Google Scholar 

  54. H.Y. Lu, H. Balkan, and K.Y. Simon, J. Mater. Sci. 17, 171–188 (2006).

    Google Scholar 

  55. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 17, 2775–2778 (2002).

    Article  Google Scholar 

  56. M. Reid, J. Punch, M. Collins, and C. Ryan, Solder. Surf. Mount Technol. 20, 3–8 (2008).

    Article  Google Scholar 

  57. J. Keller, D. Baither, U. Wilke, and G. Schmitz, Acta Mater. 59, 2731–2741 (2011).

    Article  Google Scholar 

  58. K. Zeng, M. Pierce, H. Miyazaki, and B. Holdford, J. Electron. Mater. 41, 253–261 (2011).

    Article  Google Scholar 

  59. M. Meilunas, A. Primavera, and S.O. Dunford, The Proceedings of the IPC Annual Meeting (New Orleans, LA: Nov 2002), pp. S08-5-1–S08-5-14.

  60. S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K.J. Puttlitz, JOM 55, 61–65 (2003).

    Article  Google Scholar 

  61. J.-M. Song, J.-J. Lin, C.-F. Huang, and H.-Y. Chuang, Mater. Sci. Eng. A 466, 9–17 (2007).

    Article  Google Scholar 

  62. M. Tanaka, T. Sasaki, T. Kobayashi, and K. Tatsumi, The Proceedings of the 56th Electronic Components Technology Conference (San Diego, CA: IEEE/CPMT, May 31–June 2, 2006), pp. 78–84.

  63. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460–461, 595–603 (2007).

    Article  Google Scholar 

  64. T. T. Mattila, E. Kaloinen, A. Syed, and J.K. Kivilahti, The Proceedings of the 57th Electronic Component and Technology Conference (Reno, NV: IEEE/EIA CPMT, May 29–June 1, 2007), pp. 381–390.

  65. W.H. Zhu, L. Xu, J.H.L. Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y. S. Sun, C.K. Wang, and H.B. Tan, The Proceedings of the 58th Electronic Component and Technology Conference, (Orlando, FL: IEEE/EIA CPMT, May 27–30, 2008), pp. 1667–1672.

  66. M. Sona and K.N. Prabhu, J. Mater. Sci. 24, 3149–3169 (2013).

    Google Scholar 

  67. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, J. Electron. Mater. 41, 2631–2658 (2012).

    Article  Google Scholar 

  68. J.-H. Lee, A.-M. Yu, J.-H. Kim, M.-S. Kim, and N. Kang, Met. Mater. Int. 14, 649–654 (2008).

    Article  Google Scholar 

  69. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, and F.X. Che, J. Electron. Mater. 42, 470–484 (2013).

    Article  Google Scholar 

  70. K. Suganuma, S.-H. Huh, K. Kim, H. Nakase, and Y. Nakamura, Mater. Trans. 42, 286–291 (2001).

    Article  Google Scholar 

  71. T. Hurtony, A. Bonyár, P. Gordon, and G. Harsányi, Microelectron. Reliab. 52, 1138–1142 (2012).

    Article  Google Scholar 

  72. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, and T. Shibuya, Microelectron. Reliab. 42, 951–966 (2002).

    Article  Google Scholar 

  73. F.X. Che, J.E. Luan, and X. Baraton, The Proceedings of the 58th Electronic Components Technology Conference (Orlando, FL: IEEE/CPMT, May 27–30, 2008), pp. 485–490.

  74. F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, J. Mater. Sci. 46, 3424–3429 (2011).

    Article  Google Scholar 

  75. P.D. Pereira, J.E. Spinelli, and A. Garcia, Mater. Des. 45, 377–383 (2013).

    Article  Google Scholar 

  76. T. Chen and I. Dutta, J. Electron. Mater. 37, 347–354 (2008).

    Article  Google Scholar 

  77. Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otsuka, J. Electron. Mater. 33, 321–328 (2004).

    Article  Google Scholar 

  78. J.G. Lee and K.N. Subramanian, Microelectron. Reliab. 47, 118–131 (2007).

    Article  Google Scholar 

  79. V. Vuorinen, (Doctoral dissertation, Helsinki University of Technology, Otamedia, 2006, 137 p).

  80. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, J. Electron. Mater. 36, 1355–1362 (2007).

    Article  Google Scholar 

  81. L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel, and R. Williams, Intel Technol. J. 9, 297–308 (2005).

    Article  Google Scholar 

  82. H. Nishikawa, J.Y. Piao, and T. Takemoto, J. Electron. Mater. 35, 1127–1132 (2006).

    Article  Google Scholar 

  83. M. Amagai, Microelectron. Reliab. 48, 1–16 (2008).

    Article  Google Scholar 

  84. A.E. Hammad, Mater. Des. 50, 108–116 (2013).

    Article  Google Scholar 

  85. V. Vuorinen, H. Yu, T. Laurila, and J. Kivilahti, J. Electron. Mater. 37, 792–805 (2008).

    Article  Google Scholar 

  86. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, J. Electron. Mater. 32, 1203–1208 (2003).

    Article  Google Scholar 

  87. A.A. El-Daly, A.M. El-Taher, and T.R. Dalloul, Mater. Des. 55, 309–318 (2014).

    Article  Google Scholar 

  88. JESD22–B111, JEDEC Solid State Technol. Assoc., (2003), 16 p.

  89. W. Weibull, Ingeniörsvetenskapsakademiens Handlingar 151, 1–45 (1939).

    Google Scholar 

  90. W. Weibull, J. Appl. Mech. 18, 293–297 (1951).

    Google Scholar 

  91. S. Terashima, T. Kohno, A. Mizusawa, K. AraiI, O. Okada, T. Wakabayash, M. Tanaka, and K. Tatsumi, J. Electron. Mater. 38, 33–38 (2009).

    Article  Google Scholar 

  92. S. Terashima and M. Tanaka, Sci. Technol. Weld. Join. 14, 468–475 (2009).

    Article  Google Scholar 

  93. I. Panchenko, M. Mueller, S. Wiese, S. Schindler, and K-J. Wolter, The Proceedings of the 1st Electronic Components and Technology Conference, (Dresden, Germany: IEEE/CPMT, Sept. 5–7, 2011), pp. 90–99.

  94. S.-K. Seo, S.K. Kang, M.G. Cho, S.-Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  Google Scholar 

  95. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33, 1389 (2004).

    Article  Google Scholar 

  96. I. Dutta, J. Electron. Mater. 32, 201 (2003).

    Article  Google Scholar 

  97. I. Dutta, P. Kumar, and G. Subbarayan, J. Met. 61, 29 (2009).

    Google Scholar 

  98. J. Hokka, T.T. Mattila, H. Xu, and M. Paulasto-Kröckel, J. Electron. Mater. 42, 963–997 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Hokka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattila, T.T., Hokka, J. & Paulasto-Kröckel, M. The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading. J. Electron. Mater. 43, 4090–4102 (2014). https://doi.org/10.1007/s11664-014-3298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3298-8

Keywords

Navigation