Skip to main content
Log in

Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0–3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5–2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, J. Mater. Sci. 46, 3424 (2011).

    Article  Google Scholar 

  2. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460, 595 (2007).

    Article  Google Scholar 

  3. S.T. Jenq, H.S. Sheu, C.L. Yeh, Y.S. Lai, and J.D. Wu, Proceedings of 7th IEEE Electronic Packaging Technology Conference (2005), p. 631.

  4. Y.S. Lai, P.F. Yang, and C.L. Yeh, Microelectron. Reliab. 46, 645 (2006).

    Article  Google Scholar 

  5. J.H. Lee, Met. Mater. Int. 14, 649 (2008).

    Article  Google Scholar 

  6. N. Mookam and K. Kanlayasiri, J. Alloys Compd. 509, 6276 (2011).

    Article  Google Scholar 

  7. S. Terashima, Y. Kariya, T. Hosoi, and M. Tanaka, J. Electron. Mater. 32, 1527 (2003).

    Article  Google Scholar 

  8. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, Mater. Sci. Eng. A 394, 20 (2005).

    Article  Google Scholar 

  9. T.H. Wang, C.C. Wang, Y.S. Lai, K.C. Chang, and C.H. Lee, Microelectron. Eng. 85, 659 (2008).

    Article  Google Scholar 

  10. N. Chawla, Y.L. Shen, X. Deng, and E.S. Ege, J. Electron. Mater. 33, 1589 (2004).

    Article  Google Scholar 

  11. B. Li, X.P. Zhang, Y. Yang, L.M. Yin, and M.G. Pecht, Microelectron. Reliab. 53, 154 (2013).

    Article  Google Scholar 

  12. X.P. Li, J.M. Xia, M.B. Zhou, X. Ma, and X.P. Zhang, J. Electron. Mater. 40, 2425 (2011).

    Article  Google Scholar 

  13. Y. Tian, C. Hang, C. Wang, S. Yang, and P. Lin, Mater. Sci. Eng. A 529, 468 (2011).

    Article  Google Scholar 

  14. T.Y. Tee, H.S. Ng, D. Yap, X. Baraton, and Z. Zhong, Microelectron. Reliab. 43, 1117 (2003).

    Article  Google Scholar 

  15. T.H. Ju, W. Lin, Y.C. Lee, and J.J. Liu, J. Electron. Packag. 116, 242 (1994).

    Article  Google Scholar 

  16. J.K. Tien, B.C. Hendrix, and A.I. Attarwala, J. Electron. Packag. 113, 115 (1991).

    Article  Google Scholar 

  17. E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, J. Electron. Packag. 112, 110 (1990).

    Article  Google Scholar 

  18. C. Kanchanomai, Y. Miyashita, Y. Mutoh, and S.L. Mannan, Mater. Sci. Eng. A 345, 90 (2003).

    Article  Google Scholar 

  19. C. Kanchanomai and Y. Mutoh, Mater. Sci. Eng. A 381, 113 (2004).

    Article  Google Scholar 

  20. H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, Mater. Sci. Eng. A 407, 36 (2005).

    Article  Google Scholar 

  21. T.S. Park and S.B. Lee, J. Electron. Packag. 127, 237 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support for this research by Ministry of Science and Technology, Republic of China, Taiwan, under Grant No. MOST 102-2221-E-006 -294 -MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Teng Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HT., Huang, KC. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu. J. Electron. Mater. 45, 6102–6112 (2016). https://doi.org/10.1007/s11664-016-4773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4773-1

Keywords

Navigation