Skip to main content
Log in

Characteristics and Formation Mechanism of Oxide–Sulfide Complex Inclusions in High-Speed Railway Wheel Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The deleterious effects of brittle and rigid oxides on the quality of high-speed railway wheel steel can be mitigated by wrapping the oxides with sulfides. The investigation reveals the presence of three types of oxide–sulfide complex inclusions in the continuous casting billet. Type 1 possesses a core oxide with high CaO content, and its shell sulfide predominantly comprises CaS. Type 2 presents a core oxide with low CaO content, accompanied by a (Mn,Ca)S shell. The core oxide in Type 3 contains almost no CaO, and the shell sulfide is primarily MnS. The area ratio, defined as the ratio of sulfide area to oxide area, increases successively among the three types of complex inclusions. The formation mechanisms of the three types of complex inclusions vary. In Type 1, the core oxide originates from the refining process. The CaS in the shell sulfide is a product of the reaction between Al and S in the liquid steel and CaO in the oxide. In Type 2, the core oxide is formed during the cooling and solidification process. As the liquid steel solidifies, the segregation of Ca, Mn, and S leads to the formation of (Mn,Ca)S shell around the oxide. The formation temperature of the core oxide in Type 3 is lower than that of Type 1 and Type 2, occurring in the late stages of solidification. A substantial amount of MnS is formed around the oxide near the end of solidification. In the finished wheel, Type 2, characterized by its (Mn,Ca)S shell, exhibits appropriate hardness and resistance to deformation, rendering it the most optimal among three types of complex inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Ekberg and P. Sotkovszki: Int. J. Fatigue, 2001, vol. 23, pp. 29–43.

    Article  CAS  Google Scholar 

  2. M. Yamamoto: Nippon Steel Sumitomo Met. Tech. Rep., 2013, vol. 105, pp. 34–40.

    Google Scholar 

  3. V.V. Tyagnii, A.P. Stovpchenko, L.V. Chuprina, G.A. Pol’skii, Y.N. Grishchenko, and A.D. Rozhkova: Metallurgist, 2006, vol. 50, pp. 426–32.

    Article  CAS  Google Scholar 

  4. T. Sjöqvist, S. Jung, P. Jönsson, and M. Andreasson: Ironmak. Steelmak., 2000, vol. 27, pp. 373–80.

    Article  Google Scholar 

  5. Y. Tang: Adv. Mater. Res., 2013, vol. 675, pp. 264–69.

    Article  CAS  Google Scholar 

  6. Y. Ren, W. Yang, and L.F. Zhang: ISIJ Int., 2022, vol. 62, pp. 2159–71.

    Article  CAS  Google Scholar 

  7. G.F. Mi, H.Y. Nan, Y.L. Liu, B. Zhang, H. Zhang, and G.X. Song: J. Iron. Steel Res. Int., 2011, vol. 18, pp. 49–54.

    Article  CAS  Google Scholar 

  8. L. Luyckx, J.R. Bell, A. McLean, and M. Korchynsky: Metall. Trans., 1970, vol. 1, pp. 3341–50.

    Article  CAS  Google Scholar 

  9. Z.L. Xue, N. Li, L. Wang, S.Q. Song, D.M. Liu, and A. Huang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3860–74.

    Article  CAS  Google Scholar 

  10. C. Sheng, Q. Lu, J.B. Guo, and Z. Yang: Steel Iron, 2021, vol. 56, pp. 62–67.

    Google Scholar 

  11. X.Y. Li, W.M. Wu, Y. Chen, H. Zhao, C. Sheng, and Y.Z. He: Iron Steel Vanadium Titanium, 2021, vol. 42, pp. 199–204.

    CAS  Google Scholar 

  12. X. Guo, M. Tan, T. Li, K. Liu, B. Shang, J. Dang, and X.M. Ding: Int. J. Metalcast., 2023, vol. 17, pp. 2741–53.

    Article  CAS  Google Scholar 

  13. J.L. Lu, G.G. Cheng, L. Chen, and L.S. Wang: ISIJ Int., 2018, vol. 58, pp. 1307–15.

    Article  CAS  Google Scholar 

  14. A. Larsson and S. Ruppi: Mater. Sci. Eng. A, 2001, vol. 313, pp. 160–69.

    Article  Google Scholar 

  15. J.L. Lu, G.G. Cheng, J.L. Che, L.S. Wang, and G.J. Xiong: Metall. Mater. Int., 2019, vol. 25, pp. 473–86.

    Article  CAS  Google Scholar 

  16. S.B. Hosseini, C. Temmel, B. Karlsson, and N.G. Ingesten: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 982–89.

    Article  Google Scholar 

  17. N. Ånmark, A. Karasev, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1600111.

    Article  Google Scholar 

  18. C.H. Leung and L.H. Van Vlack: J. Am. Ceram. Soc., 1979, vol. 62, pp. 613–16.

    Article  CAS  Google Scholar 

  19. C.H. Leung and L.H. Van Vlack: Metall. Trans. A, 1981, vol. 12, pp. 987–91.

    Article  CAS  Google Scholar 

  20. Y. Li, G.G. Cheng, J.L. Lu, and H. Long: Metall. Mater. Int., 2023, vol. 29, pp. 1019–33.

    Article  CAS  Google Scholar 

  21. Y. Li, G.G. Cheng, J.L. Lu, and H. Long: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 3343–60.

    Article  Google Scholar 

  22. T. Kano and T. Hanyuda: Denki Seiko (Electric Furnace Steel), 2004, vol. 75, pp. 27–34.

    Article  CAS  Google Scholar 

  23. G.Z. Zhang and R.M. Ren: Eng. Fail. Anal., 2019, vol. 105, pp. 1287–95.

    Article  Google Scholar 

  24. L. Krajnc, P. Mrvar, and J. Medved: Mater. Tehnol., 2014, vol. 48, pp. 923–29.

    Google Scholar 

  25. H. Wang, J. Li, C.B. Shi, Y.F. Qi, and Y.X. Dai: ISIJ Int., 2019, vol. 59, pp. 828–38.

    Article  CAS  Google Scholar 

  26. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359–66.

    Article  CAS  Google Scholar 

  27. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.

    Article  Google Scholar 

  28. Y. Liu and L.F. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1624–31.

    Article  Google Scholar 

  29. C.S. Liu, D. Kumar, B.A. Webler, and P.C. Pistorius: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 529–42.

    Article  Google Scholar 

  30. Y.J. Kang, F. Li, K. Morita, and D. Sichen: Steel Res. Int., 2006, vol. 77, pp. 785–92.

    Article  CAS  Google Scholar 

  31. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  32. J.H. Shin and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 311–24.

    Article  Google Scholar 

  33. X.F. Bai, Y.H. Sun, R.M. Chen, Y.M. Zhang, and Y.F. Cai: Int. J. Min. Met. Mater., 2019, vol. 26, pp. 573–87.

    Article  CAS  Google Scholar 

  34. W. Zheng, Z.H. Wu, G.Q. Li, Z. Zhang, and C.Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 1755–64.

    Article  CAS  Google Scholar 

  35. I. Ohnaka: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 1045–51.

    Article  CAS  Google Scholar 

  36. S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.

    Article  CAS  Google Scholar 

  37. M. El-Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  CAS  Google Scholar 

  38. J. Guo, S.S. Cheng, and Z.J. Cheng: ISIJ Int., 2013, vol. 53, pp. 2142–51.

    Article  CAS  Google Scholar 

  39. P. Zhao, G.G. Cheng, and S. Shen: Technical Handbook of Secondary Refining and Hot Metal Pretreatment, Metallurgical Industry Press, Beijing, 2004, pp. 25–26.

    Google Scholar 

  40. Z.Y. Deng, Z.H. Liu, M.Y. Zhu, and L.Q. Huo: ISIJ Int., 2021, vol. 61, pp. 1–5.

    Article  Google Scholar 

  41. L.Z. Jiang and K. Cui: Steel Res., 1997, vol. 68, pp. 163–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express gratitude for the financial support and technical guidance provided by Shanxi Taigang Stainleess Steel Co. Ltd., specifically in relation to the project: Development of key manufacturing technology of high-speed railway wheel and axle steel materials.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, D., Cheng, G., Zhang, J. et al. Characteristics and Formation Mechanism of Oxide–Sulfide Complex Inclusions in High-Speed Railway Wheel Steel. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03078-2

Navigation