Skip to main content
Log in

Investigation on the Formation Pathway of the MnS–Al2O3 Inclusions at Atomic Level in High-Speed Wheel Steel

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the high-speed wheel steel, the composite inclusions of MnS–Al2O3 reduce the overall elastic modulus of the Al2O3 and avoid the fatigue crack around the inclusions. It is of great industrial significance to clarify the mechanism of formation progress of the composite inclusions. In this paper, the formation process of the composite inclusions is simulated on an atomic scale by the first principle calculations through the adsorption model. The structure of MnS–Al2O3 composite inclusion was optimized through a series of cases with different adsorption sequences of the Mn and S atoms on the surface of Al2O3 inclusions. The most stable adsorption positions of the Mn and S atoms are determined by comparing the adsorption energy through structural optimization. The adsorption of the atoms is further explained by the calculation results of the density of state (DOS), the partial density of state (PDOS), and charge density distribution (CDD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. S.K. Dhua, A. Ray, S.K. Sen, M.S. Prasad, K.B. Mishra, S. Jha, Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel. J. Mater. Eng. Perform. 9, 700–709 (2000)

    Article  CAS  Google Scholar 

  2. G. Mi, H. Nan, Y. Liu, B. Zhang, H. Zhang, G. Song, Influence of Inclusion on crack initiation in wheel rim. J. Iron. Steel Res. Int. 18, 49–54 (2011)

    Article  CAS  Google Scholar 

  3. S. Chakraborty, R.J. O’Malley, L. Bartlett, M. Xu, Removal of alumina inclusions from molten steel by ceramic foam filtration. Inter Metalcast 15, 1006–1020 (2021). https://doi.org/10.1007/s40962-020-00537-9

    Article  CAS  Google Scholar 

  4. Z. Wu, Z. Liu, S. Qiu, X. Li, Effect of composition and morphology of non-metallic inclusions on fracture toughness in as-cast AHSS. Metall. Res. Technol. 116, 623 (2019)

    Article  CAS  Google Scholar 

  5. E.T. Turkdogan, S. Ignatowicz, J. Pearson, The solubility of sulphur in iron and iron-manganese alloys. J. Iron Steel Inst. 180, 349–354 (1955)

    CAS  Google Scholar 

  6. W.A. Spitzig, Effect of sulfides and sulfide morphology on anisotropy of tensile ductility and toughness of hot-rolled C-Mn steels. Metall. Trans. A 14, 471–484 (1983)

    Article  CAS  Google Scholar 

  7. E. Aydın, C.F. Arısoy, M.K. Sesen, The effect of manganese sulfide inclusions and zirconium additions on the mechanical properties of heavy section cast steel. Inter Metalcast 12, 383–395 (2018). https://doi.org/10.1007/s40962-017-0175-2

    Article  CAS  Google Scholar 

  8. R. Sakaguchi, T. Shiraiwa, P. Chivavibul, T. Kasuya, M. Enoki, N. Yamashita et al., Multiscale analysis of MnS inclusion distributions in high strength steel. ISIJ Int. 60, 1714–1723 (2020)

    Article  CAS  Google Scholar 

  9. T. Koseki, G. Thewlis, Overview inclusion assisted microstructure control in C-Mn and low alloy steel welds. Mater. Sci. Technol. 21, 867–879 (2005)

    Article  CAS  Google Scholar 

  10. Y. Min, Q. Zhang, H. Xu, J. Xu, C. Liu, Formation and evolution of inclusions with different adding order of magnesium and sulfur in Al-killed free-cutting steel. Metals 8, 1064 (2018)

    Article  CAS  Google Scholar 

  11. Y. Tanaka, F. Pahlevani, S. Moon, R. Dippenaar, V. Sahajwalla, In situ characterisation of MnS precipitation in high carbon steel. Sci. Rep. 9, 10096 (2019)

    Article  Google Scholar 

  12. D. You, S.K. Michelic, C. Bernhard, D. Loder, G. Wieser, Modeling of Inclusion formation during the Solidification of Steel. ISIJ Int. 56, 1770–1778 (2016)

    Article  CAS  Google Scholar 

  13. F. Li, H. Li, D. Huang, S. Zheng, J. You, Mechanism of MnS precipitation on Al2O3–SiO2 inclusions in non-oriented silicon steel. Met. Mater. Int. 24, 1394–1402 (2018)

    Article  CAS  Google Scholar 

  14. D. Kim, K. Han, B. Lee, I. Han, J.H. Park, C. Lee, Oxide formation mechanisms in high manganese steel welds. Metall. Mater. Trans. A. 45, 2046–2054 (2014)

    Article  CAS  Google Scholar 

  15. J. Shim, J. Byun, Y.W. Cho, Y. Oh, J. Shim, D.N. Lee, Mn absorption characteristics of Ti2O3 inclusions in low carbon steels. Scripta Mater. 44, 49–54 (2001)

    Article  CAS  Google Scholar 

  16. H. Ohta, H. Suito, Precipitation and dispersion control of MnS by deoxidation products of ZrO2, Al2O3, MgO and MnO–SiO2 particles in Fe–10mass%Ni alloy. ISIJ Int. 46, 480–489 (2006)

    Article  CAS  Google Scholar 

  17. X.L. Xin, J. Yang, Y.N. Wang, R.Z. Wang, W.L. Wang, H.G. Zheng et al., Effects of Al content on non-metallic inclusion evolution in Fe–16Mn–xAl–0.6C high Mn TWIP steel. Ironmak. Steelmak. 43, 234–42 (2016)

    Article  CAS  Google Scholar 

  18. J.M. Summers, S. Chakraborty, L.N. Bartlett, R.J. O’Malley, M.F. Buchely, R. Pilon, On the effect of hot rolling on inclusion size and distribution in a cast aisi 1070 steel railroad wheel. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00854-1

    Article  Google Scholar 

  19. M. Alba, M. Nabeel, N. Dogan, Investigation of inclusion formation in light-weight Fe–Mn–Al steels using automated scanning electron microscope equipped with energy-dispersive X-ray spectroscopy. Steel Res. Int. 91, 1900477 (2020)

    Article  CAS  Google Scholar 

  20. M. Alba, M. Nabeel, N. Dogan, Effect of aluminium content on the formation of inclusions in Fe–5Mn–xAl steels. Ironmak. steelmak. 48(4), 379–386 (2020)

    Article  Google Scholar 

  21. M. Nabeel, M. Alba, A. Karasev, P.G. Jönsson, N. Dogan, Characterization of inclusions in 3rd generation advanced high-strength steels. Metall. Mater. Trans. B. 50, 1674–1685 (2019)

    Article  CAS  Google Scholar 

  22. L. Cheng, C. Xu, L. Lu, L. Yu, K. Wu, Experimental and first principle calculation study on titanium, zirconium and aluminum oxides in promoting ferrite nucleation. J. Alloy Compd. 742, 112–122 (2018)

    Article  CAS  Google Scholar 

  23. H. Xue, X. Wei, W. Guo, X. Zhang, Bonding mechanism study of active Ti element and α-Al2O3 by using first-principle calculation. J Alloy Compd. 820, 153070 (2020)

    Article  CAS  Google Scholar 

  24. Q. Tian, J. Li, X. Wu, J. Fu, G. Wang, Growth mechanism of MnS/Fe on TiN surface: first principle investigation. J. Alloy Compd. 844, 155831 (2020)

    Article  CAS  Google Scholar 

  25. W. Lv, W. Jin, L. Yan, X. Pang, H. Yang, K. Gao, Interaction between Cu and Cr coadsorption on MnS inclusions in low alloy steels. Appl. Surf. Sci. 471, 425–434 (2019)

    Article  CAS  Google Scholar 

  26. B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning. Acta Mater. 205, 116561 (2021)

    Article  CAS  Google Scholar 

  27. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)

    Article  CAS  Google Scholar 

  28. A.E. Mattsson, P.A. Schultz, M.P. Desjarlais, T.R. Mattsson, K. Leung, Designing meaningful density functional theory calculations in materials science—a primer. Model. Simul. Mater. Sci. Eng. 13, R1-31 (2004)

    Article  Google Scholar 

  29. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya et al., Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int. J. Quant. Chem. 77, 895–910 (2000)

    Article  CAS  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  31. A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, K. Laasonen, Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudo potentials. Phys. Rev. B. 47, 10142–10153 (1993)

    Article  Google Scholar 

  32. J.W. Elam, C.E. Nelson, M.A. Cameron, M.A. Tolbert, S.M. George, Adsorption of H2O on a single-crystal α-Al2O3(0001) surface. J. Phys. Chem. B 102, 7008–7015 (1998)

    Article  CAS  Google Scholar 

  33. J. Ahn, J.W. Rabalais, Composition and structure of the Al2O3{0001}-(1 × 1) surface. Surf. Sci. 388, 121–131 (1997)

    Article  CAS  Google Scholar 

  34. M. Gautier, G. Fenaud, L. Van Pham, B. Villette, M. Pollak, N. Thromat et al., alpha-Al2O3 (0001) surfaces: atomic and electronic structure. J. Am. Ceram. Soc. 77, 323–334 (1994)

    Article  CAS  Google Scholar 

  35. E.A.A. Jarvis, E.A. Carter, Metallic character of the Al2O3(0001)-(√31 × √31)R ± 9° surface reconstruction. J. Phys. Chem. B 105, 4045–4052 (2001)

    Article  CAS  Google Scholar 

  36. P.J. Eng, Structure of the hydrated -Al2O3 (0001) Surface. Science 288, 1029–1033 (2000)

    Article  CAS  Google Scholar 

  37. Q. Fu, T. Wagner, M. Rühle, Hydroxylated α-Al2O3 (0001) surfaces and metal/α-Al2O3 (0001) interfaces. Surf. Sci. 600, 4870–4877 (2006)

    Article  CAS  Google Scholar 

  38. Q. Xu, S. Wei, B. Huang, Theoretical study of corundum as an ideal gate dielectric material for graphene transistors. Phys. Rev. B. 84, 155406 (2011)

    Article  Google Scholar 

  39. Y. Shao, C. Liu, Z. Yan, H. Li, Y. Liu, Formation mechanism and control methods of acicular ferrite in HSLA steels: a review. J. Mater. Sci. Technol. 34, 737–744 (2018)

    Article  Google Scholar 

  40. H. Jin, J. Shim, Y. Cho, H. Lee, Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel. ISIJ Int. 43, 1111–1113 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors greatly acknowledge the support of the projects from the Excellent Youth Foundation of Hebei Province, China (E2021209039), Hebei Financial Support Project for the Introduced Overseas Student (C20210309); the National Natural Science Foundation of China (No. 52074056) and the Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-msxmX0449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Tan, M., Li, T. et al. Investigation on the Formation Pathway of the MnS–Al2O3 Inclusions at Atomic Level in High-Speed Wheel Steel. Inter Metalcast 17, 2741–2753 (2023). https://doi.org/10.1007/s40962-022-00941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00941-3

Keywords

Navigation