Skip to main content
Log in

In Situ Microscale Observation of FeOx–SiO2 Interfacial Reaction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Promoting the interfacial reaction between iron oxide (FeOx) particles generated from concentrate and silica-flux in the reaction shaft is essential to make the slag with good flowability and ensure matte separation in the settler of the flash furnace. The interfacial reaction of micro-meter-order-sized FeOx particles in contact with silica-flux was observed using high-temperature microscopy, and the slag formation behavior was successfully observed directly with this system. The main product of FeS oxidation is Fe3O4 in the flash furnace operation condition, and the reaction temperature between Fe3O4 and SiO2 is considerably higher than the typical melt temperature in the settler. On the other hand, when FeS coexisted with Fe3O4, the reaction temperature with SiO2 was significantly lowered. It was shown that the coexistence of FeS with Fe3O4 and SiO2 is the key to the removal of Fe3O4 and the formation of FeOx–SiO2 slag in the reaction shaft. The effect of the particle size, the composition of silica-flux, and the partial pressure of O2 on the reaction were also investigated in this study. It was shown that the observation method reported here has the potential for obtaining the reaction kinetics of interfacial slag formation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. International Copper Study Group(ICSG): The World Copper Factbook 2022 (International Copper Study Group, 2022).

  2. United States Geological Survey (USGS): Mineral Commodity Summaries (2023), https://www.usgs.gov/centers/national-minerals-information-center/mineral-commodity-summaries. Accessed 16 May 2023.

  3. Winton Group: Copper-Bottomed Booms and Busts (2017), https://www.winton.com/longer-view/copper-bottomed-booms-and-busts. Accessed 17 May 2023.

  4. H. Asahi, and N. Shiraishi: in COPPER2022, 2022.

  5. Copper Development Association Inc.: Copper Drives Electric Vehicles (CDA, 2017).

  6. M.E. Schlesinger, K.C. Sole, W.G. Davenport, and G.R.F.A. Flores: Extractive Metallurgy of Copper, 6th ed. Elsevier, Amsterdam, 2021.

    Google Scholar 

  7. K. Pérez, N. Toro, E. Gálvez, P. Robles, R. Wilson, and A. Navarra: J. Mater. Res. Technol., 2021, vol. 15, pp. 213–25.

    Article  Google Scholar 

  8. M. White, R. Haywood, D.J. Ranasinghe, and S. Chen: in Eleventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2015, pp. 7–9.

  9. I.V. Kojo, M.A. Reuter, and M.N. Scheidema: in EMC, 2015, pp. 77–93.

  10. P. Taskinen and A. Jokilaakso: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3524–42.

    Article  Google Scholar 

  11. I.V. Kojo, and H. Storch: in Sohn International Symposium Advanced Processing of Metals and Materials, F. Kongoli, and Reddy R.G., eds., TMS (The Minerals, Metals & Materials Society), 2006, pp. 226–38.

  12. C. Alexander, H. Johto, M. Lindgren, L. Pesonen, and A. Roine: Clean. Environ. Syst., 2021, vol. 3, p. 100052.

    Article  Google Scholar 

  13. I.V. Kojo, A. Jokilaakso, and P. Hanniala: JOM, 2000, vol. 52, pp. 57–61.

    Article  CAS  Google Scholar 

  14. M. Shamsuddin and H.Y. Sohn: JOM, 2019, vol. 71, pp. 3253–65.

    Article  CAS  Google Scholar 

  15. Y. Goto, S. Natsui, and H. Nogami: in TMS Annual Meeting & Exhibition, Springer Nature Switzerland, 2023, pp 87–94.

  16. J.-P. Jylhä, N.A. Khan, and A. Jokilaakso: Processes, 2020, vol. 8, p. 485.

    Article  Google Scholar 

  17. A. Schmidt, V. Montenegro, and G.D. Wehinger: Metall. Mater. Trans. B, 2020, vol. 52B, pp. 405–13.

    Google Scholar 

  18. N. Kemori, W.T. Denholm, and H. Kurokawa: Metall. Trans. B, 1989, vol. 20B, pp. 327–36.

    Article  CAS  Google Scholar 

  19. S. Nirmal Kumar, B. Desai, V. Tathavadkar, Y. Patel, J. Patel, A. Singh, K. Vakil, and S. Kanakanand: Miner. Process. Extr. Metall., 2022, vol. 132, pp. 49–61.

    Google Scholar 

  20. C.B. Solnordal, F.R.A. Jorgensen, P.T.L. Koh, and A. Hunt: Appl. Math. Modell., 2006, vol. 30, pp. 1310–25.

    Article  Google Scholar 

  21. T. Kimura, Y. Ojima, Y. Mori, and Y. Ishii: in The Reinhardt Schuhmann International Symposium on Innovative Technology and Reactor Design in Extraction Metallurgy, 1986, pp 403–17.

  22. N. Kemori, Y. Ojima, and Y. Kondo: in A Center for Pyrometallurgy Conf., University of Utah, Salt Lake City, UT, 1988, pp. 47–68.

  23. T. Ahokainen and A. Jokilaakso: Can. Metall. Q., 1998, vol. 37, pp. 275–83.

    Article  CAS  Google Scholar 

  24. A. Muan: J. Met., 1955, vol. 7, pp. 965–76.

    CAS  Google Scholar 

  25. H. Li and W.J. Rankin: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 79–89.

    Article  CAS  Google Scholar 

  26. D. Shishin, E. Jak, and S.A. Decterov: J. Phase Equilib. Diffus., 2018, vol. 39, pp. 456–75.

    Article  CAS  Google Scholar 

  27. N. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531–38.

    Article  Google Scholar 

  28. A. Vartiainen: Scand. J. Metall., 1982, vol. 11, pp. 239–42.

    CAS  Google Scholar 

  29. H.M. Henao, F. Kongoli, and K. Itagaki: Mater. Trans., 2005, vol. 46, pp. 812–19.

    Article  CAS  Google Scholar 

  30. P. Taskinen, A. Dinsdale, and J. Gisby: Scand. J. Metall., 2005, vol. 34, pp. 100–07.

    Article  CAS  Google Scholar 

  31. R. Sridhar, J.M. Toguri, and S. Simeonov: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 191–200.

    Article  CAS  Google Scholar 

  32. G. Roghani, Y. Takeda, and K. Itagaki: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 705–12.

    Article  CAS  Google Scholar 

  33. E. Jak, P. Hayes, A. Pelton, and S. Decterov: Int. J. Mater. Res., 2007, vol. 98, pp. 847–54.

    Article  CAS  Google Scholar 

  34. F.R.A. Jorgensen: Proc. Australas Inst. Min., 1983, vol. 288, pp. 37–46.

    CAS  Google Scholar 

  35. A.T. Jokilaakso, R.O. Suominen, P.A. Taskinen, and K.R. Lilius: Trans. Inst. Min. Metall., 1991, vol. 100, pp. C79-90.

    CAS  Google Scholar 

  36. V. Stefanova and Y. Trifonov: Russ. J. Non-Ferr. Met., 2008, vol. 49, pp. 148–55.

    Article  Google Scholar 

  37. E. Hassan Zaim, S.H. Mansouri, and A. Arab Solghar: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 251–58.

    Article  CAS  Google Scholar 

  38. M. Pérez-Tello, V.R. Parra-Sánchez, V.M. Sánchez-Corrales, A. Gómez-Álvarez, F. Brown-Bojórquez, R.A. Parra-Figueroa, E.R. Balladares-Varela, and E.A. Araneda-Hernández: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 627–43.

    Article  Google Scholar 

  39. L. Arias, S. Torres, C. Toro, E. Balladares, R. Parra, C. Loeza, C. Villagran, and P. Coelho: Sensors (Basel), 2018, vol. 18, p. 2009.

    Article  PubMed  Google Scholar 

  40. M. Marin, C. Toro, L. Arias, and E. Balladares: IEEE Access, 2019, vol. 7, pp. 103346–53.

    Article  Google Scholar 

  41. C. Toro, S. Torres, V. Parra, R. Fuentes, R. Castillo, W. Diaz, G. Reyes, E. Balladares, and R. Parra: Sensors (Basel), 2020, vol. 20, p. 1284.

    Article  CAS  PubMed  Google Scholar 

  42. N. Rajabi, M. Ghodrat, and M. Moghiman: Int. J. Environ. Sci. Technol., 2021, vol. 18, pp. 2925–36.

    Article  CAS  Google Scholar 

  43. R. Zahedi, A. Shaghaghi, M.T. Tahooneh, and A. Ahmadi: Fut. Energy, 2022, vol. 2, pp. 1–8.

    Article  Google Scholar 

  44. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, pp. 945–58.

    Article  CAS  Google Scholar 

  45. S. Natsui, I. Nishimura, A. Ito, and H. Nogami: Chem. Eng. Sci., 2023, vol. 267, p. 118355.

    Article  CAS  Google Scholar 

  46. Y. Sasaki, Y. Mori, T. Miura, and H. Aoki: J. MMIJ, 2009, vol. 125, pp. 129–34.

    Article  CAS  Google Scholar 

  47. H. Takebe, Y. Takahashi, and T. Okura: J. Sustain. Metall., 2019, vol. 5, pp. 210–18.

    Article  Google Scholar 

  48. N. Nishioka, R. Tsurusaki, S. Hasegawa, and H. Takebe: in COPPER2022, Santiago, Chile, 2022.

  49. S. Natsui, Y. Goto, J.-I. Takahashi, and H. Nogami: Chem. Eng. Sci., 2023, vol. 276, p. 118822.

    Article  CAS  Google Scholar 

  50. T. Nakamura, F. Noguchi, Y. Ueda, and S. Nakajyo: J. Min. Metall. Inst. Jpn., 1988, vol. 104, pp. 463–68.

    CAS  Google Scholar 

  51. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  52. A. Yazawa: Can. Metall. Q., 1974, vol. 13, pp. 443–53.

    Article  CAS  Google Scholar 

  53. A. Yazawa: Metall. Trans. B, 1979, vol. 10B, pp. 307–21.

    Article  CAS  Google Scholar 

  54. I. Barin: Thermochemical Data of Pure Substances, VCH, Winheim, 1989.

    Google Scholar 

  55. R.G. Berman and T.H. Brown: Contrib. Mineral. Petrol., 1985, vol. 89, pp. 168–83.

    Article  CAS  Google Scholar 

  56. S.K. Saxena, N. Chatterjee, Y. Fei, and G. Shen: Thermodynamic Data on Oxides and Silicates, Springer, New York, 1993.

    Book  Google Scholar 

  57. S.A. Decterov, I.H. Jung, E. Jak, Y.B. Kang, P. Hayes, and A.D. Pelton: in International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, pp. 839–50.

  58. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  59. D.R. Stull and H. Prophet: JANAF Thermochemical Tables, 3rd ed. American Chemical Society, Washington, DC, 1985.

    Google Scholar 

  60. S.-H. Shin, S. Kawanishi, S. Sukenaga, M. Ohtsuka, J. Takahashi, and H. Shibata: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3720–29.

    Article  Google Scholar 

  61. E. De Wilde, I. Bellemans, M. Campforts, M. Guo, K. Vanmeensel, B. Blanpain, N. Moelans, and K. Verbeken: J. Sustain. Metall., 2016, vol. 3, pp. 416–27.

    Article  Google Scholar 

  62. S. Ueda, K. Yamaguchi, and Y. Takeda: Mater. Trans., 2008, vol. 49, pp. 572–78.

    Article  CAS  Google Scholar 

  63. T. Hidayat, D. Shishin, E. Jak, and S.A. Decterov: Calphad, 2015, vol. 48, pp. 131–44.

    Article  CAS  Google Scholar 

  64. H. Johto, H.M. Henao, E. Jak, and P. Taskinen: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1364–70.

    Article  Google Scholar 

  65. D.C. Hilty and W. Crafts: Trans. AIME, 1952, vol. 4, pp. 1307–12.

    Google Scholar 

  66. A.J. Naldrett: J. Petrol., 1969, vol. 10, pp. 171–201.

    Article  CAS  Google Scholar 

  67. S.-H. Shin, S. Kawanishi, S. Sukenaga, J. Takahashi, and H. Shibata: J. Sustain. Metall., 2023, vol. 9, pp. 884–95.

    Article  Google Scholar 

  68. Z. Asaki, M. Shiiki, H. Kusuno, H. Kato, H. Doi, and Y. Kondo: Metall. Trans. B, 1986, vol. 17B, pp. 639–45.

    Article  CAS  Google Scholar 

  69. N. Kemori, Y. Shibata, and K. Fukushima: J. Met., 1985, vol. 37, pp. 24–29.

    CAS  Google Scholar 

  70. J.W. Matousek: Jom, 2014, vol. 66, pp. 1670–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Akihisa Ito and Miho Hayasaka of the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), who helped determine the experimental methodology.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Goto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, Y., Kawanishi, S., Natsui, S. et al. In Situ Microscale Observation of FeOx–SiO2 Interfacial Reaction. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03063-9

Navigation