Skip to main content
Log in

Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Equilibria among the slag, matte and metal phases in the Cu-Fe-O-S-Si system are critically assessed using thermodynamic modeling. The relationships among matte grade, temperature, partial pressure of SO2, Fe/SiO2 in the slag, and the copper concentration in the slag are described by the model, as well as the concentrations of other elements in all phases. A thermodynamic database is created, which can be used for understanding and improving the pyrometallurgical production of copper. An extensive experimental dataset includes the most recent results obtained by the equilibration/quenching/EPMA analysis technique. These data allow to distinguish the physical entrainment of the matte and solid phases in the slag from chemical solubility. As a result, it is possible to describe the copper solubility in the slag with high accuracy and establish the relationship between copper and sulfur in the slag. The thermodynamic database of the present study is consistent with previously reported thermodynamic evaluations of binary, ternary and quaternary subsystems. The slag phase is modeled using the two-sublattice modified quasichemical model in the quadruplet approximation. The matte and metal liquid phases are modeled as one solution using the single-sublattice modified quasichemical model in the pair approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.A. Degterov and A.D. Pelton, A Thermodynamic Database for Copper Smelting and Converting, Metall. Mater. Trans. B, 1999, 30B, p 661-669

    Article  Google Scholar 

  2. E. Jak, P. Hayes, C.W. Bale, and S.A. Decterov, Application of FactSage Thermodynamic Modeling of Recycled Slags (Al2O3-CaO-FeO-Fe2O3-SiO2-PbO-ZnO) in the Treatment of Wastes from End-of-Life-Vehicles, Int. J. Mater. Res., 2007, 98, p 872-878

    Article  Google Scholar 

  3. E. Jak, S.A. Decterov, B. Zhao, A.D. Pelton, and P.C. Hayes, Coupled Experimental and Thermodynamic Modelling Studies for Metallurgical Smelting and Coal Combustion Slag Systems, Metall. Mater. Trans. B, 2000, 31B, p 621-630

    Article  Google Scholar 

  4. E. Jak, S.A. Decterov, P.C. Hayes, and A.D. Pelton, in Thermodynamic Modelling of the System PbO-ZnO-FeO-Fe 2 O 3 -CaO-SiO 2 for Zinc/Lead Smelting. Proceedings of 5th International Conference on Molten Slags, Fluxes and Salts, Iron and Steel Society, AIME, Sydney, 1997, pp. 621–628

  5. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage Thermochemical Software and Databases—Recent Developments, CALPHAD, 2009, 33, p 295-311

    Article  Google Scholar 

  6. J. Chen, P.C. Hayes, and E. Jak, in Experimental Investigation of Slag/Matte/Metal/Tridymite Equilibrium in the Cu-Fe-O-S-Si System at T = 1200 °C: Development of Technique and Results. Internal Report University of Queensland, 2017

  7. J. Chen, P.C. Hayes, and E. Jak, in Experimental Investigation of Slag/Matte/Metal/Tridymite Equilibrium in the Cu-Fe-O-S-Si System at T = 1250 and 1300 °C. Internal Report University of Queensland, 2017

  8. T. Hidayat, A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at T = 1250 °C and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, submitted

  9. T. Hidayat, A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473 K (1200 °C) and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, 49, p 1750-1765

    Article  Google Scholar 

  10. T. Hidayat, A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at T = 1200 °C and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, submitted

  11. T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at T = 1250 °C and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, submitted

  12. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmosphere: Experimental Results at T = 1523 K (1250 °C) and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, 49, p 1732-1739

    Article  Google Scholar 

  13. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Experimental Results at T = 1473 K [1200 °C] and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2017, 48, p 3017-3026

    Article  Google Scholar 

  14. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmospheres: Development of Technique, Metall. Mater. Trans. B, 2017, 48, p 3002-3016

    Article  Google Scholar 

  15. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmospheres: Experimental Results at T = 1473 K [1200 °C] and P(SO2) = 0.1, 0.25, 0.6 atm, Metall. Mater. Trans. B, 2018, submitted

  16. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si-Mg System in Controlled Gas Atmospheres: Experimental Results at T = 1473 K [1200 °C] and P(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, submitted

  17. E. Jak, T. Hidayat, D. Shishin, A.F. Mehrjardi, J. Chen, and P. Hayes, in Integrated Experimental Phase Equilibria and Thermodynamic Modelling Studies for Copper Pyrometallurgy. 9th International Copper Conference, Kobe, Japan, 2016

  18. T. Hidayat, D. Shishin, E. Jak, and S. Decterov, Thermodynamic Reevaluation of the Fe-O System, CALPHAD, 2015, 48, p 131-144

    Article  Google Scholar 

  19. P. Waldner and A.D. Pelton, Thermodynamic Modeling of the Fe-S System, J. Phase Equilib. Diffus., 2005, 26, p 23-28

    Article  Google Scholar 

  20. P. Waldner and A.D. Pelton, in Thermodynamic Modeling of the Cu-Fe-S System. Internal Report, Ecole Polytechnique de Montreal (Montreal, QC, Canada), 2006

  21. D. Shishin, in Development of a Thermodynamic Database for Copper Smelting and Converting, Ph. D. Thesis, École Polytechnique de Montréal, 2013

  22. D. Shishin and S.A. Decterov, Critical Assessment and Thermodynamic Modeling of Cu-O and Cu-O-S Systems, CALPHAD, 2012, 38, p 59-70

    Article  Google Scholar 

  23. D. Shishin, T. Hidayat, E. Jak, and S. Decterov, Critical Assessment and Thermodynamic Modeling of Cu-Fe-O System, CALPHAD, 2013, 41, p 160-179

    Article  Google Scholar 

  24. D. Shishin, E. Jak, and S.A. Decterov, Critical Assessment and Thermodynamic Modeling of the Fe-O-S System, J. Phase Equilib. Diffus., 2015, 36, p 224-240

    Article  Google Scholar 

  25. D. Shishin, E. Jak, and S.A. Decterov, Thermodynamic Assessment and Database for the Cu-Fe-O-S System, CALPHAD, 2015, 50, p 144-160

    Article  Google Scholar 

  26. T. Hidayat and E. Jak, Thermodynamic Modeling of the “Cu2O”-SiO2, “Cu2O”-CaO, and “Cu2O”-CaO-SiO2 Systems in Equilibrium with Metallic Copper, Int. J. Mater. Res., 2014, 105, p 249-257

    Article  Google Scholar 

  27. T. Hidayat, D. Shishin, S.A. Decterov, and E. Jak, Experimental Study and Thermodynamic Re-evaluation of the FeO-Fe2O3-SiO2 System, J. Phase Equilib. Diffus., 2017, 38, p 477-492

    Article  Google Scholar 

  28. T. Hidayat, D. Shishin, S. Decterov, and E. Jak, Critical Assessment and Thermodynamic Modeling of the Cu-Fe-O-Si System, CALPHAD, 2017, 58, p 101-114

    Article  Google Scholar 

  29. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, FactSage Thermochemical Software and Databases, 2010-2016, CALPHAD, 2016, 54, p 35-53

    Article  Google Scholar 

  30. G. Lambotte, in Approche Thermodynamique de la Corrosion des Réfractaires Aluminosiliceux par le Bain Cryolithique : Modélisation Thermodynamique du Système Quaternaire Réciproque AlF 3-NaF-SiF 4-Al 2 O 3-Na 2 O-SiO 2. Ph. D. Thesis, École Polytechnique de Montréal, 2012

  31. A. Yazawa and M. Kameda, Fundamental Studies on Copper Smelting. IV. Solubility of FeO in Copper Matte from SiO2-saturated FeO-SiO2 Slag, Technol. Rep. Tohoku Univ., 1955, 19, p 251-261

    Google Scholar 

  32. M. Kameda and A. Yazawa, in The Oxygen Content of Copper Mattes, ed. by G.R.S. Pierre. Proceedings of Physical Chemistry of Process Metallurgy, Part 2, TMS Conference. Proceedings of Interscience, NY, 1961, pp. 963–988

  33. N. Korakas, Etude Thermodynamic de l’équilibre Entre Scories Ferro-siliceuses et Mattes de Cuivre. Application aux Problèmes Posés par la Formation de Magnetite Lors du Traitement des Minerais Sulfurés de Cuivre, Ph. D. Thesis, Univirsité de Liège, 1964

  34. U. Kuxmann and F.Y. Bor, Studies on the Solubility of Oxygen in Copper Mattes under Ferric Oxide Slags Saturated with Silica, Erzmetall, 1965, 18, p 441-450

    Google Scholar 

  35. F.Y. Bor and P. Tarassoff, Solubility of Oxygen in Copper Mattes, Can. Metall. Q., 1971, 10, p 267-271

    Article  Google Scholar 

  36. A. Geveci and T. Rosenqvist, Equilibrium Relations between Liquid Copper, Iron–Copper Matte, and Iron Silicate Slag at 1250°, Trans. Inst. Min. Metall., 1973, 82, p C193-C201

    Google Scholar 

  37. M. Nagamori, Metal Loss to Slag: Part I. Sulfidic and Oxidic Dissolution of Copper in Fayalite Slag from Low Grade Matte, Metall. Trans. B, 1974, 5B, p 531-538

    Article  ADS  Google Scholar 

  38. F.J. Tavera and W.G. Davenport, Equilibrations of Copper Matte and Fayalite Slag under Controlled Partial Pressures of Sulfur Dioxide, Metall. Trans. B, 1979, 10B, p 237-241

    Article  ADS  Google Scholar 

  39. G.H. Kaiura, K. Watanabe, and A. Yazawa, The Behavior of Lead in Silica-Saturated Copper Smelting Systems, Can. Metall. Q., 1980, 19, p 191-200

    Article  Google Scholar 

  40. Y. Takeda, in Copper Solubility in Matte Smelting Slag. Proceedings of International Conference on Molten Slags, Fluxes Salts ‘97, 5th, Iron and Steel Society Warrendale, PA, 1997, pp. 329–339

  41. W.H. MacLean, Liquid Phase Relations in the FeS-FeO-Fe3O4-SiO2 System, and Their Application in Geology, Econ. Geol., 1969, 64, p 865-884

    Article  Google Scholar 

  42. D. Dilner and M. Selleby, Thermodynamic Description of the Fe-Ca-O-S System, CALPHAD, 2017, 57, p 118-125

    Article  Google Scholar 

  43. Y. Jo, H.-G. Lee, and Y.-B. Kang, Thermodynamics of the MnO-FeO-MnS-FeS-SiO2 System at SiO2 Saturation Under Reducing Condition: Immiscibility in the Liquid Phase, ISIJ Int., 2013, 53, p 751-760

    Article  Google Scholar 

  44. A.D. Pelton, P. Chartrand, and G. Eriksson, The Modified Quasichemical Model IV—Two Sublattice Quadruplet Approximation, Metall. Mater. Trans. A, 2001, 32, p 1409-1415

    Article  Google Scholar 

  45. R. Piao, H.-G. Lee, and Y.-B. Kang, Experimental Investigation of Phase Equilibria and Thermodynamic Modeling of the CaO-Al2O3-CaS and the CaO-SiO2-CaS Oxysulfide Systems, Acta Mater., 2013, 61, p 683-696

    Article  Google Scholar 

  46. H. Jalkanen, Copper and Sulfur Solubilities in Silica-Saturated Iron Silicate Slags from Copper Mattes, Scand. J. Metall., 1981, 10, p 177-184

    Google Scholar 

  47. A. Yazawa, S. Nakazawa, Y. in Takeda, Distribution Behavior of Various Elements in Copper Smelting Systems, ed by H.Y. Sohn, D.B. George, A.D. Zunkel. Proceedings of International Sulfide Smelting Symposium on Extr. Process Metall. Meet. Metall. Soc, Advance Sulfide Smelting, AIME, 1983, pp. 99–117

  48. R. Shimpo, S. Goto, O. Ogawa, and I. Asakura, A Study on the Equilibrium Between Copper Matte and Slag, Can. Metall. Q., 1986, 25, p 113-121

    Article  Google Scholar 

  49. F.J. Tavera and E. Bedolla, Distribution of Copper, Sulfur, Oxygen and Minor Elements Between Silica-Saturated Slag, Matte and Copper—Experimental Measurements, Int. J. Miner. Process., 1990, 29, p 289-309

    Article  Google Scholar 

  50. H. Li and W.J. Rankin, Thermodynamics and Phase Relations of the Fe-O-S-SiO2(sat) System at 1200 °C and the Effect of Copper, Metall. Trans. B, 1994, 25B, p 79-89

    Article  Google Scholar 

  51. Y. Takeda, in Oxygen Potential Measurement of Iron Silicate SlagCopperMatte System. Proceedings of International Conference on Molten Slags, Fluxes Salts ‘97, 5th, Iron and Steel Society Warrendale, PA, 1997, pp. 735–743

  52. J.M. Font, G. Roghani, M. Hino, and K. Itagaki, Solubility of Copper or Nickel in Iron-Silicate Base Slag Equilibrated with Cu2S-FeS or Ni3S2-FeS Matte Under High Partial Pressures of SO2, Metall. Rev. MMIJ, 1998, 15, p 75-86

    Google Scholar 

  53. A. Yazawa, Thermodynamic Considerations of Copper Smelting, Can. Metall. Q., 1974, 13, p 443-453

    Article  Google Scholar 

  54. A. Yazawa and M. Kameda, Fundamental Studies on Copper Smelting. I. Partial Liquidus Diagram for FeS-FeO-SiO2 System, Technol. Rep. Tohoku Univ., 1953, 18, p 40-58

    Google Scholar 

  55. Y.-B. Kang and A. Pelton, Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags, Metall. Mater. Trans. B, 2009, 40, p 979-994

    Article  Google Scholar 

  56. M.M. Nzotta, D. Sichen, and S. Seetharaman, Sulfide Capacities of FeO-SiO2, CaO-FeO, and FeO-MnO Slags, ISIJ Int., 1999, 39, p 657-663

    Article  Google Scholar 

  57. S.R. Simeonov, R. Sridhar, and J.M. Toguri, Sulfide Capacities of Fayalite-Base Slags, Metall. Trans. B, 1995, 26B, p 325-334

    Article  Google Scholar 

  58. M.G. Park, Y. Takeda, and A. Yazawa, Equilibrium Relations Between Liquid Copper, Matte and Calcium Ferrite Slag at 1250 °C, Tohoku Daigaku Senko Seiren Kenkyusho Iho, 1983, 39, p 115-122

    Google Scholar 

  59. C. Acuna and A. Yazawa, Mutual Dissolution Between Matte and Ferrite Slags, Trans. Jpn. Inst. Met., 1986, 27, p 881-889

    Article  Google Scholar 

  60. G. Roghani, M. Hino, and K. Itagaki, Phase Equilibrium Between Calcium Ferrite Slag and Copper Matte at 1523 K Under High Partial Pressures of SO2, Mater. Trans. JIM, 1996, 37, p 1431-1437

    Article  Google Scholar 

  61. F. Sehnalek and I. Imris, in Slags from Continuous Copper Production, ed. by M.J. Jones. Proceedings of International Symposium on Institution of Mining and Metallurgy, Advances in Extractive Metallurgy and Refining, London, England, 1972, pp. 39–62

  62. P. Spira and N. Themelis, Solubility of Copper in Slags, J. Met., 1969, 21, p 35-42

    Google Scholar 

  63. E.-B. Johansen, T. Rosenqvist, and P.T. Torgersen, Thermodynamics of Continuous Copper Smelting, J. Met., 1970, 22, p 39-47

    Google Scholar 

  64. J.M. Font, Y. Takeda, and K. Itagaki, Phase Equilibrium Between Iron–Silicate Base Slag and Nickel–Iron Matte at 1573 K Under High Partial Pressures of SO2, Mater. Trans., 1998, 39, p 652-657

    Article  Google Scholar 

  65. P. Tan, in CuModelA Thermodynamic Model and Computer Program of Copper Smelting and Converting Processes and Its Industrial Applications, ed. by M.E. Schlesinger. EPD Congress 2004, Proceedings of Sessions and Symposia held during the TMS Annual Meeting, Charlotte, NC, United States, Mar 14–18, 2004, Minerals, Metals and Materials Society, Warrendale, PA, 2004, pp. 411–422

  66. A.D. Pelton, Thermodynamic Models and Databases for Slags, Fluxes and Salts, Trans. Inst. Min. Metall. Sect. C, 2005, 114, p 172-180

    Google Scholar 

  67. D. Shishin, T. Hidayat, S. Decterov, and E. Jak, in Thermodynamic Modelling of Liquid SlagMatteMetal Equilibria Applied to the Simulation of the Peirce-Smith Converter. Proceedings of 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, Seattle, USA, 2016

    Google Scholar 

  68. D. Shishin, T. Hidayat, E. Jak, S. Decterov, and G.V. Belov, Thermodynamic Database for Pyrometallurgical Copper Extraction, in Proceedings of Copper’2016, Kobe, Japan, 2016, p. 12

  69. C.J.B. Fincham and F.D. Richardson, The Behaviour of Sulphur in Silicate and Aluminate Melts, Proc. R. Soc. (Lond.), 1954, 223, p 40-62

    Article  ADS  Google Scholar 

  70. G. Eriksson and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 Systems, Metall. Trans., 1993, 24, p 807-816

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Australian Research Council, linkage project LP140100480 “Creating sustainable copper supplies by using innovative high temperature chemical processing of highly complex impure ores and recycled materials”. We appreciate the financial and technical support by the consortium of copper producers: Umicore NV, Aurubis AG, Kazzinc Ltd (Glencore), Outotec Oy, Complejo Metalúrgico Altonorte, Atlantic Copper, BHP Billiton Olympic Dam Corporation, PASAR (Glencore), Anglo American Platinum, Kennecott (Rio Tinto).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Decterov.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishin, D., Jak, E. & Decterov, S.A. Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System. J. Phase Equilib. Diffus. 39, 456–475 (2018). https://doi.org/10.1007/s11669-018-0661-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0661-0

Keywords

Navigation