Skip to main content
Log in

Deformation Transmission Mechanism in Reduction Process During Steel Casting and Its Impact on Density

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solidification process of castings is prone to shrinkage porosity and macroscopic segregation defects. Utilizing a reduction technique to control the defects in the solidification process of castings is an effective method. In order to investigate the influence mechanism of reduction technology on the reduction-induced deformation at different positions during the solidification process of castings and the impact on the density of solidification structure, laboratory experiments on the reduction-induced deformation of steel ingots during solidification were conducted. Corresponding finite element numerical simulations were performed, and micro-CT detection was employed to analyze the pore distribution of the ingots. It was found that reduction-induced deformation during the solidification can effectively enhance the density of steel ingots. This study also innovatively introduces the concept of relative deformation displacement and reduction-induced deformation transfer coefficient, providing a measure of the actual compression deformation at different positions in the steel ingot during the reduction-induced deformation process. When the fraction solid is less than 0.70, the reduction-induced deformation transfer coefficient is ranging between 1.1 and 1.2. However, when the fraction solid is greater than 0.75, the reduction-induced deformation transfer coefficient rapidly decreases with an increase in the fraction solid until it reaches zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L. Liu, R. Guan, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3731–44.

    Article  Google Scholar 

  2. J. Li, X. Xu, N. Ren, M. Xia, and J. Li: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1901–14.

    Article  CAS  Google Scholar 

  3. Y. Nian, L. Zhang, C. Zhang, N. Ali, J. Chu, J. Li, and X. Liu: Processes, 2022, vol. 10, p. 2669.

    Article  CAS  Google Scholar 

  4. H. Preßlinger, S. Ilie, P. Reisinger, A. Schiefermüller, A. Pissenberger, E. Parteder, and C. Bernhard: ISIJ Int., 2006, vol. 46, pp. 1845–51.

    Article  Google Scholar 

  5. W. Bleck, W. Wang, and R. Bülte: Steel Res. Int., 2006, vol. 77, pp. 485–91.

    Article  CAS  Google Scholar 

  6. Z. Wei, C. Ji, T. Chen, and M. Zhu: Steel Res. Int., 2022, vol. 93, p. 2100348.

    Article  CAS  Google Scholar 

  7. R. Thome and K. Harste: ISIJ Int., 2006, vol. 46, pp. 1839–44.

    Article  CAS  Google Scholar 

  8. R. Chu, Z. Li, J. Liu, Y. Fan, Y. Liu, and C. Ma: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 272–78.

    Article  Google Scholar 

  9. D. Jiang, L. Zhang, and M. Zhu: Steel Res. Int., 2022, vol. 93, p. 2100569.

    Article  CAS  Google Scholar 

  10. M. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945–64.

    Article  Google Scholar 

  11. C. Ji, S. Luo, and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 504–10.

    Article  CAS  Google Scholar 

  12. S. Luo, M. Zhu, and C. Ji: Ironmak. Steelmak., 2014, vol. 41, pp. 233–40.

    Article  CAS  Google Scholar 

  13. H. Ma, J. Zhang, Y. Yin, Z. Yan, and H. Liu: Ironmak. Steelmak., 2022, vol. 49, pp. 887–97.

    Article  CAS  Google Scholar 

  14. Y. Li, L. Li, and J. Zhang: Steel Res. Int., 2017, vol. 88, p. 1700176.

    Article  Google Scholar 

  15. L. Li, Z. Zhang, M. Luo, B. Li, P. Lan, and J. Zhang: Metals-Basel, 2021, vol. 11, p. 9.

    Article  CAS  Google Scholar 

  16. R. Li, H. Li, L. Wang, G. Wang, J. Li, and J. Li: Ironmak. Steelmak., 2023, vol. 50, pp. 273–85.

    Article  CAS  Google Scholar 

  17. J. Zhang, C. Wu, C. Ji, Y. Chen, and M. Zhu: Steel Res. Int., 2022, vol. 93, p. 2000601.

    Article  CAS  Google Scholar 

  18. B. Yang, M. Wang, H. Zhang, S. Liu, G. Wang, and X. Wang: Metals-Basel, 1873, vol. 2022, p. 12.

    Google Scholar 

  19. C. Wu, C. Ji, and M. Zhu: J. Mater. Process. Technol., 2019, vol. 271, pp. 651–59.

    Article  Google Scholar 

  20. C. Wu, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2867–83.

    Article  Google Scholar 

  21. C. Ji, G. Li, C. Wu, and M. Zhu: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 110–22.

    Article  Google Scholar 

  22. C. Ji, Z. Wang, C. Wu, and M. Zhu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 767–82.

    Article  Google Scholar 

  23. C. Ji, C. Wu, and M. Zhu: JOM-US, 2016, vol. 68, pp. 3107–15.

    Article  Google Scholar 

  24. R. Guan, C. Ji, C. Wu, and M. Zhu: Int. J. Heat Mass Transf., 2019, vol. 141, pp. 503–16.

    Article  CAS  Google Scholar 

  25. C. Wu, C. Ji, and M. Zhu: Metals-Basel, 2019, vol. 9, p. 128.

    Article  CAS  Google Scholar 

  26. M. Jiang, E. Yang, Z. Hou, and X. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2753–59.

    Article  Google Scholar 

  27. Y. Han, W. Yan, J. Zhang, J. Chen, W. Chen, and Q. Liu: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 160–67.

    Article  CAS  Google Scholar 

  28. Y. Han, W. Yan, J. Zhang, W. Chen, J. Chen, and Q. Liu: ISIJ Int., 2020, vol. 60, pp. 106–13.

    Article  CAS  Google Scholar 

  29. Y. Smyrnov, V. Belevitin, and V. Skliar: Mater. Sci. Forum, 2019, vol. 946, pp. 684–89.

    Article  Google Scholar 

  30. Y. Yao, B. Wang, S. Liu, L. Zhong, S. Shen, Z. Chen, and J. Zhang: Adv. Mater. Sci. Eng., 2020, vol. 2020, pp. 1–18.

    Google Scholar 

  31. B. Wang, J. Zhang, C. Xiao, S. Wang, and W. Song: High Temp. Mater. Process. Isr., 2016, vol. 35, pp. 269–74.

    Article  CAS  Google Scholar 

  32. N. Ali, L. Zhang, H. Zhou, A. Zhao, C. Zhang, K. Fu, and J. Cheng: Mater. Res., 2021, vol. 24, p. e20210055.

    Article  CAS  Google Scholar 

  33. P. Wang, H. Qiao, Y. Zhang, Y. Li, K. Chen, and Q. Feng: Constr. Build. Mater., 2020, vol. 246, p. 118504.

    Article  CAS  Google Scholar 

  34. X. Xi and S. Yang: Constr. Build. Mater., 2019, vol. 221, pp. 177–89.

    Article  CAS  Google Scholar 

  35. N. Ali, L. Zhang, H. Zhou, A. Zhao, C. Zhang, and Y. Gao: Mater. Des., 2021, vol. 209, p. 109978.

    Article  CAS  Google Scholar 

  36. M. Jiang, T. Yao, E. Yang, and X. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3322–33.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 52104317 and 51874001.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Zhang or Fuhui Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Nian, Y., Zhang, L. et al. Deformation Transmission Mechanism in Reduction Process During Steel Casting and Its Impact on Density. Metall Mater Trans B 55, 1351–1366 (2024). https://doi.org/10.1007/s11663-024-03032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03032-2

Navigation