Skip to main content
Log in

Evolution of Porosity Microsegregation in Continuous Casting Bloom During the Heating Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The microsegregation of continuous casting bloom or slab could cause the banded structures in the rolled products, which would seriously reduce the anisotropy, plasticity, and toughness of steel. The previous research mostly focused on the dendrite microsegregation that is located between the dendrites. However, the microsegregation degree (MSD) of porosity segregation that is associated with and located around the center shrinkage cavity is much more serious than that of dendrite segregation. In this paper, a new evaluation method of microsegregation at the microscale that considered the proportion of segregated cells and microsegregation concentration ratio was developed based on the concept of degree centrality in “network science.” Combining this new microsegregation evaluation method and orthogonal experiment, the porosity microsegregation improvement of continuous casting bloom for heavy rail steel with different holding times and temperatures during the heating process was investigated by the diffusion kinetic model. The results show that the holding temperature has the greatest impact on element diffusion when compared to the shrinkage cavity size and holding time. When the size of the shrinkage cavity is greater than 400 μm, the optimal holding temperature is 1250 °C, and the optimal holding time is 90 min. The new diffusion kinetic model of porosity microsegregation has high accuracy with the optimal conditions of the heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.K. Sigworth: Int. J. Met., 2014, vol. 8, pp. 7–20.

    Google Scholar 

  2. R. Guan, C. Ji, C. Wu, and M. Zhu: Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503–16.

    Article  CAS  Google Scholar 

  3. R. Guan, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1137–53.

    Article  Google Scholar 

  4. R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2571–83.

    Article  Google Scholar 

  5. A. Marder: Metall. Mater. Trans. A, 1982, vol. 13A, pp. 85–92.

    Article  CAS  Google Scholar 

  6. C. Tasan, J. Hoefnagels, and M. Geers: Scr. Mater., 2010, vol. 62, pp. 835–38.

    Article  CAS  Google Scholar 

  7. K.B. Yoo, J.H. Kim, and N.H. Heo: ISIJ Int., 2010, vol. 50, pp. 1702–06.

    Article  CAS  Google Scholar 

  8. X.G. Liu, D.N. Meng, Y.H. Wang, H. Chen, and M. Jin: J. Mater. Eng. Perform., 2014, vol. 24, pp. 1079–85.

    Article  Google Scholar 

  9. N. H. Heo, J. C. Chang, S. J. Kim: Mater. Sci. Eng. A, vol. 559, pp. 665–77.

  10. S.N. Samaras and G.N. Haidemenopoulos: J. Mater. Eng. Perform., 2007, vol. 194, pp. 63–73.

    CAS  Google Scholar 

  11. H.E. Lippard, C.E. Campbell, T. Bjorklind, U. Borggren, P. Kellgren, G.B. Olson, and V.P. Dravid: Metall. Mater. Trans. B, 1998, vol. 29, pp. 205–10.

    Article  Google Scholar 

  12. Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, Y.Q. Zhang, and J.Y. Wang: ISIJ Int., 2019, vol. 59, pp. 1893–1900.

    Article  CAS  Google Scholar 

  13. H.J. Wang, J. Xu, Y.L. Kang, M.O. Tang, and Z.F. Zhang: J. Alloy. Compd., 2014, vol. 585, pp. 19–24.

    Article  CAS  Google Scholar 

  14. S. He, C.S. Li, J.Y. Ren, and Y.H. Han: Steel Res. Int., 2018, vol. 89, p. 1800148.

    Article  Google Scholar 

  15. Y. Deng, Z. Yin, and F. Cong: Intermetallics, 2012, vol. 26, pp. 114–21.

    Article  CAS  Google Scholar 

  16. H.W. Ai, Z.G. Lv, and X. Guo: Rare Metal Mat. Eng., 2017, vol. 46, pp. 2476–80.

    CAS  Google Scholar 

  17. H.H. Ge, F.L. Ren, J. Li, X.J. Xia, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2017, vol. 48A(3), pp. 1139–50.

    Article  Google Scholar 

  18. P. Lan and J.Q. Zhang: Ironmak. Steelmak., 2014, vol. 41, pp. 598–606.

    Article  CAS  Google Scholar 

  19. J. Sun and S. Lu: Scripta Mater., 2020, vol. 186, pp. 174–79.

    Article  CAS  Google Scholar 

  20. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 154–58.

    Article  Google Scholar 

  21. D.F. Zhang and M. Strangwood: Mater. Sci. Technol., 2019, vol. 35, pp. 1337–46.

    Article  CAS  Google Scholar 

  22. R. Kadalbal, J. Montoyacruz, and T. Kattamis: Metall. Mater. Trans. A, 1980, vol. 11, pp. 1547–53.

    Article  Google Scholar 

  23. Shewmon P: McGraw-Hill, New York, 1963, pp. 154.

  24. M. Kajihara: Mater. Trans., 2010, vol. 51, pp. 1242–48.

    Article  CAS  Google Scholar 

  25. W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, and X.Y. Liu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2127–33.

    Article  CAS  Google Scholar 

  26. D. F. Zhang, J. Peng: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2005, vol. 20, pp. 111–14.

  27. M.C. Schneider and C. Beckermann: ISIJ Int., 1995, vol. 35, pp. 665–72.

    Article  CAS  Google Scholar 

  28. S. Nabeshima, H. Nakato, T. Fujii, T. Fujimura, K. Kushida, and H. Mizota: ISIJ Int., 1995, vol. 35, pp. 673–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work is financially supported by the National Natural Science Foundation of China U1560208, and Fundamental Research Funds for the Central Universities of China N172504024 and N182515006. Special thanks are due to our cooperating company for industrial trials and applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Guan, R., Ji, C. et al. Evolution of Porosity Microsegregation in Continuous Casting Bloom During the Heating Process. Metall Mater Trans B 53, 3731–3744 (2022). https://doi.org/10.1007/s11663-022-02636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02636-w

Navigation