Skip to main content
Log in

First-Principles Calculations of Formation Pathways for Ce2Si2O7 Oxide Particles at High Temperatures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fine-sized oxide particles are often used to improve the mechanical properties and service life of materials. Particularly, rare earth-silicate particles have high deformability and promising applications in metallic materials and ceramic coatings. To study the formation of rare earth-silicate particles and control their physical characteristics, we apply first-principles calculations and investigate the nucleation mechanism of Ce2Si2O7 particles at the atomic scale. The estimated thermodynamic properties of (Ce2Si2O7)n (n = 1 – 4) agree reasonably well with the experimental data, indicating that the first-principles calculation is reliable. Furthermore, the potential of a preformed nuclear phase for Ce2Si2O7 particles is thermodynamically demonstrated. Four formation pathways of Ce2Si2O7 particles are proposed and discussed. Based on thermodynamic principles, the most probable formation pathway is [Ce]+[Si]+[O]→(Ce2Si2O7)n→Ce2Si2O7(s), and another formation pathway is considered the least likely, (SiO2)n+(Ce2O3)n→(Ce2Si2O7)n→Ce2Si2O7(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Koseki and G. Thewlis: Mater. Sci. Technol., 2013, vol. 21, pp. 867–79.

    Google Scholar 

  2. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, and K. Nagai: ISIJ Int., 2007, vol. 47, pp. 1781–88.

    CAS  Google Scholar 

  3. L.Z. Wang, S.F. Yang, J.S. Li, S. Zhang, and J.T. Ju: Metall. Mater. Trans. B, 2017, vol. 48, pp. 805–18.

    CAS  Google Scholar 

  4. C.L. Hao, C.Y. Yang, P. Liu, Y.K. Luan, and B.G. Sang: J. Iron. Steel Res. Int., 2023, https://doi.org/10.1007/s42243-023-01055-8.

    Article  Google Scholar 

  5. R.M. Geng, J. Li, and C.B. Shi: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1659–68.

    CAS  Google Scholar 

  6. G.D. Wang and Y.W. Lv: China Metall., 2012, vol. 8, pp. 751–83.

    CAS  Google Scholar 

  7. C.H. Kuo: Int. J. Solids Struct., 2007, vol. 44, pp. 860–73.

    Google Scholar 

  8. P.F.F. Walker: Mater. Sci. Technol., 2014, vol. 30, pp. 385–410.

    CAS  Google Scholar 

  9. U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami: Eng. Failure Anal., 2019, vol. 98, pp. 228–39.

    CAS  Google Scholar 

  10. W. Yang, K. Peng, L. Zhang, and Q. Ren: J. Mater. Res. Technol., 2020, vol. 9, pp. 15016–22.

    CAS  Google Scholar 

  11. L. Zhang, C. Guo, W. Yang, Y. Ren, and H. Ling: Metall. Mater. Trans. B, 2017, vol. 49, pp. 803–11.

    Google Scholar 

  12. Y. Wang, X. Sun, L. Zhang, and Y. Ren: J. Mater. Res. Technol., 2020, vol. 9, pp. 11351–60.

    CAS  Google Scholar 

  13. L. Zhang: J. Iron. Steel Res. Int., 2006, vol. 13, pp. 1–8.

    Google Scholar 

  14. S.C. Yu, Q.H. Zhu, S.Q. Wu, Y.J. Gong, Y.S. Gong, M.S. Lian, G. Ye, and Y.J. Cheng: J. Iron. Steel Res. Int., 2006, vol. 13, pp. 40–4.

    CAS  Google Scholar 

  15. X.H. Yang and P.F. Wu: Chin. J. Rare Earths, 2010, vol. 28, pp. 612–18.

    CAS  Google Scholar 

  16. K.H. Kim, S.J. Kim, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2144–53.

    CAS  Google Scholar 

  17. L. Cao, L.G. Zhu, and Z.H. Guo: J. Iron. Steel Res. Int., 2022, vol. 30, pp. 1–20.

    Google Scholar 

  18. C. Chen, Z. Jiang, Y. Li, L. Zheng, X. Huang, G. Yang, M. Sun, K. Chen, H. Yang, H. Hu, and H. Li: Steel Res. Int., 2019, vol. 90, p. 1800547.

    Google Scholar 

  19. C. Chen, M. Sun, X. Chen, B. Wang, J. Zhou, and Z. Jiang: Steel Res. Int., 2021, vol. 93, p. 2100507.

    Google Scholar 

  20. Y.G. Wang and C.J. Liu: Steel Res. Int., 2022, vol. 93, p. 2200027.

    CAS  Google Scholar 

  21. Y. Li, M. Sun, Z.H. Jiang, C.Y. Chen, K. Chen, X.F. Huang, S. Sun, and H.B. Li: Metals, 2019, vol. 9, p. 54.

    Google Scholar 

  22. Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng: Metall. Mater. Trans. B, 2016, vol. 48, pp. 956–65.

    Google Scholar 

  23. Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng: Metall. Res. Technol., 2017, vol. 114, p. 304.

    CAS  Google Scholar 

  24. A.C. Strzelecki, K. Kriegsman, P. Estevenon, V. Goncharov, J.M. Bai, S. Szenknect, A. Mesbah, D. Wu, J.S. McCloy, N. Dacheux, and X.F. Guo: ACS Earth Space Chem., 2020, vol. 4, pp. 2129–43.

    CAS  Google Scholar 

  25. T. Horiai, S. Kurosawa, R. Murakami, Y. Shoji, J. Pejchal, M. Yoshino, A. Yamaji, H. Sato, Y. Ohashi, K. Kamada, Y. Yokota, and A. Yoshikawa: Opt. Mater., 2020, vol. 109, p. 110210.

    CAS  Google Scholar 

  26. X. Jiang, D. Luo, Z. Zhang, M. Liu, Y. Liu, Y. Yu, X. Feng, and C. Lai: J. Mater. Sci., 2022, vol. 57, pp. 6988–7000.

    CAS  Google Scholar 

  27. G.C. Wang, Y.Y. Xiao, Y.L. Song, H.C. Zhou, and Q.R. Tian: J. Mater. Eng. Perform., 2016, vol. 43, pp. 1447–63.

    Google Scholar 

  28. Y.T. Li, L.Z. Wang, J.Q. Li, S.F. Yang, C.Y. Chen, C.R. Li, and X. Li: ISIJ Int., 2021, vol. 61, pp. 753–62.

    CAS  Google Scholar 

  29. Y.T. Li, J. Wang, L.Z. Wang, C.Y. Chen, S.F. Yang, J. Li, and X. Li: J. Rare Earths, 2023, https://doi.org/10.1016/j.jre.2023.03.020.

    Article  Google Scholar 

  30. W.S. Zhang, C.L. Zhang, N. Dong, J.G. Li, P.D. Han, Z.X. Zhang, and L.X. Ling: J. Iron. Steel Res. Int., 2019, vol. 26, pp. 882–87.

    CAS  Google Scholar 

  31. H.H. Zhang, H.H. Xiong, J. Qin, and J.B. Zhang: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 1291–99.

    CAS  Google Scholar 

  32. H. Xie, Y. Chen, T. Zhang, N. Zhao, C. Shi, C. He, and E. Liu: Appl. Surf. Sci., 2020, vol. 527, p. 146817.

    CAS  Google Scholar 

  33. G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–186.

    CAS  Google Scholar 

  34. D. Erdemir, A.Y. Lee, and A.S. Myerson: Acc. Chem. Res., 2009, vol. 42, pp. 621–29.

    CAS  PubMed  Google Scholar 

  35. J.R. Savage and A.D. Dinsmore: Phys. Rev. Lett., 2009, vol. 102, p. 198302.

    CAS  PubMed  Google Scholar 

  36. E.M. Pouget, P. Bomans, J. Goos, and P.M. Frederik: Science, 2009, vol. 323, pp. 1455–58.

    CAS  PubMed  Google Scholar 

  37. P.G. Vekilov: Prog. Cryst. Growth Charact. Mater., 1993, vol. 26, pp. 25–9.

    CAS  Google Scholar 

  38. P.G. Vekilov: J. Cryst. Growth, 2005, vol. 275, pp. 65–6.

    CAS  Google Scholar 

  39. A.S. Myerson and B.L. Trout: Science, 2013, vol. 341, pp. 855–56.

    CAS  PubMed  Google Scholar 

  40. G.C. Wang, Q. Wang, S.L. Li, X.G. Ai, and C.G. Fan: Sci. Rep., 2014, vol. 4, p. 5082.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. G.C. Wang, Y.Y. Xiao, C.M. Zhao, J. Li, and D.L. Shang: Metall. Mater. Trans. B, 2017, vol. 49, pp. 282–90.

    Google Scholar 

  42. Y.Y. Xiao, G.C. Wang, H. Lei, and S. Sridhar: J. Alloys Compd., 2020, vol. 813, p. 152243.

    CAS  Google Scholar 

  43. Z. Jun and D. Michael: Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 3003–10.

    Google Scholar 

  44. Z. Jun and D. Michael: Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 24173–181.

    Google Scholar 

  45. P. Pulay: J. Comput. Chem., 1982, vol. 3, pp. 556–60.

    CAS  Google Scholar 

  46. A.N. Christensen, R.G. Hazell, E. Øvreeide, K. Aaby, C.E. Olsen, J. Springborg, H. Weihe, M. Zehnder, and G.W. Francis: Acta Chem. Scand., 1994, vol. 48, pp. 1012–14.

    CAS  Google Scholar 

  47. W. Zachariasen: Zeitschrift fuer Physikalische Chemie, 1926, vol. 123U, pp. 134–50.

    Google Scholar 

  48. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    CAS  PubMed  Google Scholar 

  49. B. Delley: J. Chem. Phys., 1990, vol. 92, pp. 508–17.

    CAS  Google Scholar 

  50. Y.T. Li, L.Z. Wang, J.Q. Li, C.Y. Chen, C.R. Li, X. Li, and B. Tuo: J. Mater. Res. Technol., 2022, vol. 19, pp. 578–90.

    CAS  Google Scholar 

  51. I. Barin: VCH, 1995, https://doi.org/10.1002/9783527619825.

    Article  Google Scholar 

  52. G.J. Thomas, R.W. Siegel, and J.A. Eastman: Scr. Metall. Mater., 1990, vol. 24, pp. 201–06.

    CAS  Google Scholar 

  53. Y.Q. Liu and L.J. Wang: Chin. J. Nonfer. Metal., 2013, vol. 23, pp. 720–26.

    Google Scholar 

  54. Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen: Int. J. Min. Met. Mater., 2020, vol. 27, pp. 1083–99.

    CAS  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Nos. 52064011, 52274331 and 52264041), Guizhou Provincial Basic Research Program (Natural Science) (Nos. ZK [2021]258 and ZK [2023] Zhongdian 020), Guizhou Provincial Key Technology R&D Program (Nos. [2021]342) and Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements (No. [2022]089). Additionally, this work was supported by Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (SKLASS 2023-08) and the Science and Technology Commission of Shanghai Municipality (No. 19DZ2270200). This project is also supported by State Key Laboratory of Advanced Metallurgy (No. K23-04) and China Postdoctoral Science Foundation under Grant Number 2023MD744232. Thanks for the computing support of the State Key Laboratory of Public Big Data, Guizhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhu Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Li, Y., Zeng, J. et al. First-Principles Calculations of Formation Pathways for Ce2Si2O7 Oxide Particles at High Temperatures. Metall Mater Trans B 55, 1277–1288 (2024). https://doi.org/10.1007/s11663-024-03021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03021-5

Navigation