Skip to main content
Log in

Sintering kinetics of nanocrystalline Ce0.9Zr0.1O2 prepared by gel combustion method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The sintering process of nanometric Ce0.9Zr0.1O2 mixed oxides prepared by the amino acid–nitrate gel combustion method was analyzed by dilatometry using the constant heating rate (CHR) and stepwise isothermal dilatometry (SID) methods. The morphology of the mixed oxides was studied by scanning and transmission electron microscopies. The evolution of crystallite size with temperature was analyzed by time-resolved X-ray powder diffraction with synchrotron radiation. The sintering behavior resulted dependent on the morphology of the powders. Samples with nanometric crystallite size start to sinter even 500 K before than micrometric sample. We concluded that sintering process of nanometric Ce0.9Zr0.1O2 is controlled by grain-boundary diffusion for temperatures below 1373–1573 K, depending on the morphology of the sample. At high temperature, the grain-boundary and lattice diffusion become parallel controlling mechanism for sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei Y, Zhao Z, Jiao J, Liu J, Duan A, Jiang G. Preparation of ultrafine Ce-based oxide nanoparticles and their catalytic performances for diesel soot combustion. J Rare Earths. 2014;32(2):124–30.

    Article  CAS  Google Scholar 

  2. Trovarelli A, Boaro M, Rocchini E, de Leitenburg C, Dolcetti G. Some recent developments in the characterization of ceria-based catalysts. J Alloy Compd. 2001;323–324:584–91.

    Article  Google Scholar 

  3. Di Monte R, Kaspar J. Heterogeneous environmental catalysis—a gentle art: CeO2–ZrO2 mixed oxides as a case history. Catal Today. 2005;100:27–35.

    Article  Google Scholar 

  4. Zimicz MG, Prado FD, Soldati AL, Lamas DG, Larrondo SA. XPD and XANES studies of Ce0.9Zr0.1O2 nanocatalysts under redox and catalytic CH4 oxidation conditions. J Phys Chem C. 2015;119:19210–7.

    Article  CAS  Google Scholar 

  5. Lamas DG, Cabezas MD, Fábregas IO, Walsöe de Reca NE, Lascalea GE, Kodjaian A, Vidal MA, Amadeo NE, Larrondo SA. NiO/ZrO2–CeO2 anodes for single-chamber solid-oxide fuel cells operating on methane/air mixtures. ECS Trans. 2007;7:961–70.

    Article  Google Scholar 

  6. Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater. 2010;22:660–74.

    Article  CAS  Google Scholar 

  7. Larrondo S, Vidal MA, Irigoyen B, Craievich AF, Lamas DG, Fábregas IO, Lascalea GE, Walsöe de Reca NE, Amadeo N. Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4. Catal Today. 2005;107–108:53–9.

    Article  Google Scholar 

  8. Zimicz MG, Fábregas IO, Lamas DG, Larrondo SA. Effect of synthesis conditions on the nanopowder properties of Ce0.9Zr0.1O2. Mater Res Bull. 2011;46:850–7.

    Article  CAS  Google Scholar 

  9. Zimicz MG, Lamas DG, Larrondo SA. Ce0.9Zr0.1O2 nanocatalyst: influence of synthesis conditions in the reducibility and catalytic activity. Catal Commun. 2011;15:68–73.

    Article  CAS  Google Scholar 

  10. Larrondo S, Genoveva Zimicz M. Catalytic combustion of methane over ceria-zirconia catalysts. In: Catalytic combustion, series: chemical engineering methods and technology. Nova Science publishers; 2011. p. 173–188.

  11. Zimicz MG, Núñez P, Ruiz-Morales JC, Lamas DG, Larrondo SA. Electro-catalytic performance of 60%NiO/Ce0.9Zr0.1O2 cermets as anodes of intermediate temperature solid Oxide fuel cells. J Power Sour. 2013;238:87–94.

    Article  CAS  Google Scholar 

  12. Roy TK, Ghosh A. Sintering and grain growth kinetics in undoped and silica doped zinc oxide ceramics. Ceram Int. 2014;40:10755–66.

    Article  CAS  Google Scholar 

  13. Bernard-Granger Guillaume, Guizard Christian. Apparent activation energy of the densification of a commercially available granulated zirconia powder. J Am Ceram Soc. 2007;90:1246–50.

    Article  CAS  Google Scholar 

  14. Suzhikov AP, Ghyngazov SA, Frangulyan TS, Vasilev IP, Chernyavskii AV. Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis. J Therm Anal Calorim. 2017;128:787–94.

    Article  Google Scholar 

  15. Ghosh A, Koley S, Sahu AK, Kundu Roy T, Ramanathan S, Kothiyal GP. Sintering kinetic study of the nano-crystalline 3-mol%yttria-samaria codoped tetragonal zirconia polycrystal ceramics. J Therm Anal Calorim. 2014;115:1303–10.

    Article  CAS  Google Scholar 

  16. Guisard Restivo TA, Mello-Castanho SRH. Sintering studies on Ni–Cu-YSZ SOFC anode cermet processed by mechanical alloying. J Therm Anal Calorim. 2009;97:775–80.

    Article  Google Scholar 

  17. Yan Ruiqiang, Chu Feifei, Ma Qianli, Liu Xingqin, Meng Guangyao. Sintering kinetics of samarium doped ceria with addition of cobalt oxide. Mater Lett. 2006;60:3605–9.

    Article  CAS  Google Scholar 

  18. Meng GY, Sorensen OT. Kinetics analysis on low temperature sinter process for Y-TZP ceramic. In: Han Y, editor. Advanced structural materials, vol. 2. Amsterdam: Elsevier; 1991.

    Google Scholar 

  19. Klug H, Alexander L. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: Wiley; 1974.

    Google Scholar 

  20. Prajzler A, Salamon D, Maca K. Pressure-less rapid rate sintering of pre-sintered alumina and zirconia ceramics. Ceram Int. 2018;44:10840–6.

    Article  CAS  Google Scholar 

  21. Rhodes WH. Agglomerate and particle size effects on sintering yttria-stabilized zirconia. J Am Ceram Soc. 1981;64:19–22.

    Article  CAS  Google Scholar 

  22. Jud Eva, Huwiler Christoph B, Gauckler Ludwig J. Sintering analysis of undoped and cobalt oxide doped ceria solid solutions. J Am Ceram Soc. 2005;88:3013–9.

    Article  CAS  Google Scholar 

  23. Zhang T, Hing P, Huang H, Kilner J. Sintering and grain growth of CoO-doped CeO2 ceramics. J Eur Ceram Soc. 2002;22:27–34.

    Article  Google Scholar 

  24. Wang H, Liu X, Chen F, Meng G, Toft Sørensen O. Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion. J Am Ceram Soc. 1998;81:781–4.

    Article  CAS  Google Scholar 

  25. El Sayed Ali M, Toft Sørensen O. Initial sintering stage kinetics of CeO2 studied by stepwise isothermal dilatometry. Roskilde: Risø National Laboratory; 1985.

    Google Scholar 

  26. Yan MF, Cannon RM Jr, Bowen HK, Chowdhry U. Effect of grain size distribution on sintered density. Mater Sci Eng. 1983;60:275–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 112 2013 0100151 CO) and the Agencia Nacional de Promoción Científica y Técnica (ANPCyT, PICT 2016-1921), Argentina. We also acknowledge the support of the Laboratório Nacional de Luz Síncrotron, LNLS, Brazil (Proposal 20150137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Zimicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimicz, M.G., Soldati, A.L., Larrondo, S.A. et al. Sintering kinetics of nanocrystalline Ce0.9Zr0.1O2 prepared by gel combustion method. J Therm Anal Calorim 139, 567–575 (2020). https://doi.org/10.1007/s10973-019-08378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08378-3

Keywords

Navigation