Skip to main content
Log in

Interfacial Reactions Between Ce-Bearing Steels and a MgO-C Refractory

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, the effect of cerium content in the steel on the interfacial reaction between the steel and the MgO–C refractory was investigated in laboratory experiments by immersing MgO–C refractory bars into the molten steel. The morphology and chemical composition of reaction products at the interface and inclusions in the steel were analyzed using a scanning electron microscope (SEM) as well as an energy dispersive spectrum (EDS). When there was no cerium in the steel, the reaction product at the steel-refractory interface was mainly MgO due to the reaction between the magnesium vapor and CO at the interface. When the addition content of cerium was 0.02 and 0.1 wt pct, a Ce2O2S layer was generated at the interface by the reaction between the dissolved sulfur and cerium and the MgO refractory. With 0.5 wt pct cerium in the steel, the dissolved sulfur was mostly consumed to form CeS and Ce2O2S inclusions, leading to the generation of a double-layer reaction product of CeAlO3 and Ce2O3 at the interface, and the CeAlO3 was in the refractory side while the Ce2O3 was in the molten steel side. As the content of cerium in the molten steel increased, the erosion of the MgO–C refractory by the steel significantly increased, causing more foreign inclusions into the steel. The consumption of cerium by the steel-refractory reaction led to a significant variation in the composition of cerium-bearing inclusions. Thermodynamic calculation was consistent with the experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Vahed and D.A.R. Kay: Metall. Trans. B, 1976, vol. 7, pp. 375–83.

    Article  Google Scholar 

  2. W.G. Wilson, D.A.R. Kay, and A. Vahed: JOM, 1974, vol. 26, pp. 14–23.

    Article  ADS  CAS  Google Scholar 

  3. W. Gong, C. Wang, P.-F. Wang, Z.-H. Jiang, R. Wang, and H.-B. Li: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 1408–16.

    Article  CAS  Google Scholar 

  4. Z. Jiang, P. Wang, D. Li, and Y. Li: J. Mater. Sci. Technol., 2020, vol. 45, pp. 1–4.

    Article  CAS  Google Scholar 

  5. He. Duan, Y.-Y. Shan, Ke. Yang, X.-B. Shi, W. Yan, and Yi. Ren: Acta Metall. Sin. (Engl. Lett.), 2020, vol. 34, pp. 639–48.

    Article  Google Scholar 

  6. C. Wang, R. Ma, Y. Zhou, and Y. Liu: E. F. Daniel, X. Li, P. Wang, J. Dong, and W. Ke. J. Mater. Sci. Technol., 2021, vol. 93, pp. 232–43.

    Article  CAS  Google Scholar 

  7. W. Zheng, X. Yan, S. Xiong, G. Wang, and G. Li: J. Rare Earths, 2020, vol. 39, pp. 348–56.

    Article  Google Scholar 

  8. Z.-H. He, Y.-H. Sha, Y.-K. Gao, S.-T. Chang, F. Zhang, and L. Zuo: J. Iron. Steel Res. Int., 2020, vol. 27, pp. 1339–46.

    Article  CAS  Google Scholar 

  9. Y. Wan, W. Chen, and Wu. Shaojie: J. Rare Earths, 2013, vol. 31, pp. 727–33.

    Article  CAS  Google Scholar 

  10. Q. Ren, Hu. Zhiyuan, L. Cheng, and L. Zhang: J. Magn. Magn. Mater., 2022, vol. 560, 169624.

    Article  CAS  Google Scholar 

  11. Q. Ren and L. Zhang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 589–99.

    Article  ADS  Google Scholar 

  12. S.K. Kwon, J.S. Park, and J.H. Park: ISIJ Int., 2015, vol. 55, pp. 2589–96.

    Article  CAS  Google Scholar 

  13. Q. Ren, Z. Hu, L. Cheng, X. Kang, Y. Cheng, and L. Zhang: Steel Res. Int., 2022, vol. 93, p. 2200212.

    Article  CAS  Google Scholar 

  14. Q. Ren, L. Zhang, Hu. Zhiyuan, and L. Cheng: Ironmak. Steelmak., 2021, vol. 48, pp. 191–99.

    Article  CAS  Google Scholar 

  15. H. Wang, Yu. Peng, S. Jiang, B. Bai, L. Sun, and Yu. Wang: Metals, 2020, vol. 10, p. 275.

    Article  CAS  Google Scholar 

  16. C. Tian, L. Yuan, Y. Li, H. Li, T. Wen, G. Liu, Yu. Jingkun, and H. Li: Ceram. Int., 2021, vol. 47, pp. 28226–36.

    Article  CAS  Google Scholar 

  17. C. Tian, L. Yuan, T. Wen, Yu. Jingkun, G. Liu, and H. Li: Ceram. Int., 2022, vol. 48, pp. 6799–803.

    Article  CAS  Google Scholar 

  18. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S.-y Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230–38.

    Article  CAS  Google Scholar 

  19. C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.

    Article  ADS  Google Scholar 

  20. S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2006, vol. 33, pp. 389–97.

    Article  CAS  Google Scholar 

  21. Xu. Chunyang Liu, S.-J. Gao, S. Ueda, and S.-y Kitamura: ISIJ Int., 2018, vol. 58, pp. 488–95.

    Article  Google Scholar 

  22. Y. Zhang, Q. Ren, L. Zhang, and Y. Liu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 662–69.

    Article  ADS  Google Scholar 

  23. M. Hino and K. Ito: Thermodynamic data for steelmaking, Tohoku University Press, Sendai, 2009.

    Google Scholar 

  24. W. Li: Iron Steel, 1986, vol. 21, pp. 7–12.

    CAS  Google Scholar 

  25. J. Chen: Manual of Data and Charts Used in Steelmaking, 2nd ed. Metallurgical Industry Press, Beijing, 2010, pp. 758–61.

    Google Scholar 

  26. L. Wang, Du. Ting, Lu. Lixian, Z. Li, and Y. Gai: J. Chin. Rare Earth Soc., 2003, vol. 21, pp. 251–54.

    Google Scholar 

  27. M.C. Speer and N.A.D. Parlee: AFS Cast Metals Res. J., 1972, vol. 8, pp. 122–28.

    CAS  Google Scholar 

  28. Q. Han: In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 1990, p 166.

  29. H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from National Key R&D Program (No. 2023YFB3709900), the Natural Science Foundation of Hebei Province (Grant No. E2021203062), the National Natural Science Foundation of China (Grant Nos. U22A20171, 52104342), and the High Steel Center (HSC) at North China University of Technology, and Yanshan University, and Young Elite Scientists Sponsorship Program by CAST (No. 2022QNRC001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ren.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ren, Q., Zhao, M. et al. Interfacial Reactions Between Ce-Bearing Steels and a MgO-C Refractory. Metall Mater Trans B 55, 986–998 (2024). https://doi.org/10.1007/s11663-024-03010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03010-8

Navigation