Skip to main content
Log in

Reaction behavior of MgO refractory with high-Mn and high-Al steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To understand the mechanism of the interfacial reaction between high-Mn and high-Al steel and MgO refractory, a series of laboratory experiments as well as thermodynamic calculations were performed. The effects of Mn and Al contents in the steel and the reaction time on the interfacial reaction were investigated. It was observed that the erosion of the MgO refractory is caused by the reaction of Al and Mn in the steel with MgO in the refractory, which would lead to the formation of (Mn, Mg)O·Al2O3 spinel and (Mn, Mg)O solid solution. The formation mechanism of the spinel and solid solution is as follows. The Al in the steel firstly reacts with MgO in the refractory to generate MgO·Al2O3 spinel, and then, the spinel reacts with Mn in the steel to form (Mn, Mg)O·Al2O3 spinel. Finally, the MnO in the spinel reacts with the MgO in the inner refractory to form (Mn, Mg)O solid solution. In addition, only (Mn, Mg)O·Al2O3 spinel is present in the interfacial reaction layer of the refractory when the Al content in the steel is sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Hino, S. Zhang, ISIJ Int. 54 (2014) 2221–2229.

    Article  Google Scholar 

  2. S. Behera, R. Sarkar, Prot. Met. Phys. Chem. Surf. 52 (2016) 467–474.

    Article  Google Scholar 

  3. Z. Liu, J. Yu, X. Wang, P. Ma, W. Gu, J. Wen, S. Wei, X. Zhang, Z. Yan, T. Wen, L. Yuan, B. Ma, Ceram. Int. 48 (2022) 14117–14126.

    Article  Google Scholar 

  4. Q. Chen, Y. Li, T. Zhu, Y. Xu, Y. Li, X. Wang, Ceram. Int. 48 (2022) 2500–2509.

    Article  Google Scholar 

  5. R.W. Limes, JOM 18 (1966) 865–869.

    Article  Google Scholar 

  6. R.H. Herron, C.R. Beechan, R.C. Padfield, Amer. Ceram. Soc. Bull. 46 (1967) 1163–1168.

    Google Scholar 

  7. M. Guo, S. Parada, P.T. Jones, J. Van Dyck, E. Boydens, D. Durinck, B. Blanpain, P. Wollants, Ceram. Int. 33 (2007) 1007–1018.

    Article  Google Scholar 

  8. M. Boher, J. Lehmann, H. Soulard, M. Kandel, M.C. Kaerlé, C. Gatellier, Key Eng. Mater. 132–136 (1997) 1854–1857.

    Article  Google Scholar 

  9. C. Liu, F. Huang, X. Wang, Metall. Mater. Trans. B 47 (2016) 999–1009.

    Article  Google Scholar 

  10. C. Liu, F. Huang, J. Suo, X. Wang, Metall. Mater. Trans. B 47 (2016) 989–998.

    Article  Google Scholar 

  11. V. Brabie, Steel Res. 68 (1997) 54–60.

    Article  Google Scholar 

  12. A. Salomon, M. Dopita, M. Emmel, S. Dudczig, C.G. Aneziris, D. Rafaja, J. Eur. Ceram. Soc. 35 (2015) 795–802.

    Article  Google Scholar 

  13. L. Kong, Z. Deng, M. Zhu, Metall. Mater. Trans. B 49 (2018) 1444–1452.

    Article  Google Scholar 

  14. L. Kong, Z. Deng, M. Zhu, ISIJ Int. 57 (2017) 1537–1545.

    Article  Google Scholar 

  15. Z. Deng, M. Zhu, ISIJ Int. 53 (2013) 450–458.

    Article  Google Scholar 

  16. F.P. Calderon, N. Sano, Y. Matsushita, Metall. Trans. 2 (1971) 3325–3332.

    Article  Google Scholar 

  17. K. Beskow, L. Jonsson, D. Sichen, N.N. Viswanathan, Metall. Mater. Trans. B 32 (2001) 319–328.

    Article  Google Scholar 

  18. M.A. Van Ende, M. Guo, P.T. Jones, B. Blanpain, P. Wollants, Ceram. Int. 35 (2009) 2203–2212.

    Article  Google Scholar 

  19. A. Romero-Serrano, A.D. Pelton, ISIJ Int. 39 (1999) 399–408.

    Article  Google Scholar 

  20. P. von Schweinichen, Z. Chen, D. Senk, A. Lob, Metall. Mater. Trans. A 44 (2013) 5416–5423.

    Article  Google Scholar 

  21. W. Wang, L. Xue, T. Zhang, L. Zhou, H. Liu, H. Xiao, Q. Sun, Ceram. Int. 46 (2020) 17561–17568.

    Article  Google Scholar 

  22. L. Fu, Y. Zou, A. Huang, H. Gu, H. Ni, J. Am. Ceram. Soc. 102 (2019) 3705–3714.

    Article  Google Scholar 

  23. Y. Zou, A. Huang, L. Fu, H. Gu, Ceram. Int. 44 (2018) 12965–12972.

    Article  Google Scholar 

  24. L. Zhang, L. Cheng, Y. Ren, J. Zhang, Ceram. Int. 46 (2020) 15674–15685.

    Article  Google Scholar 

  25. A. Huang, Y. Wang, H. Gu, Y. Zou, Ceram. Int. 44 (2018) 22146–22153.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the National Natural Science Foundation of China (Grant Nos. 52274337 and 52174317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-min Zang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Lz., Zu, L., Yang, J. et al. Reaction behavior of MgO refractory with high-Mn and high-Al steel. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-023-01124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01124-y

Keywords

Navigation