Skip to main content
Log in

Microstructure Evolution of the Pb–Al Alloy Solidified Under the Effect of Electric Current Pulses

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A theoretical model was built to describe the microstructure evolution during the solidification of a liquid–solid phase separation alloy under the effect of electric current pulses (ECPs). Solidification experiments were performed with Pb–0.15 wt pct Al alloy and the microstructure evolution was simulated. The simulation results are consistent with the experimental ones. They show that the Joule heating effect of ECPs can enhance the melt convection; the electromagnetic force induced by ECPs leads to a migration of minority phase particles (MPPs) from the surface to the center; the electromagnetic energy induced by ECPs can effectively promote the nucleation of MPPs, resulting in the refinement of MPPs. The peak current density \(\left( {j_{{{\text{max}}}} } \right)\) of ECPs and the temperature drop of the melt in the nucleation region during one pulse cycle \(\left( {\Delta T_{{F,{\text{Nuc}}}} = F^{ - 1} \cdot \left( {\partial T/\partial t} \right)_{{{\text{Nuc}}}} } \right)\) dominate the refinement extent of MPPs. When the peak current density is lower than a critical value, the size of MPPs is almost unchanged. While when the peak current density is higher, the size of MPPs decrease rapidly. For a fixed value of \(j_{{{\text{max}}}}\), there is an optimal value of \(\Delta T_{{F,{\text{Nuc}}}}\) to achieve the best refinement extent of MPPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.F. Cole and F.E. Goodwin: JOM J. Miner. Met. Mater. Soc., 1990, vol. 42, pp. 41–3.

    Article  CAS  Google Scholar 

  2. Z.C. Lu, Z.L. Liu, Y.L. Li, D. Wu, and F.M. Wang: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 201, 012045.

    Article  Google Scholar 

  3. S.K. Yu, F. Sommer, and B. Predel: Z. Fuer Met., 1996, vol. 87, pp. 574–80.

    CAS  Google Scholar 

  4. T. Ahmed, H.X. Jiang, W. Li, and J.Z. Zhao: Acta Metall. Sin. Engl. Lett., 2018, vol. 31, pp. 842–52.

    Article  CAS  Google Scholar 

  5. M. Nakada, Y. Shiohara, and M.C. Flemings: ISIJ Int., 1990, vol. 30, pp. 27–33.

    Article  CAS  Google Scholar 

  6. N. Balasubramani, Y.Y. Xu, Y.H. Zhang, Q.J. Zhai, G. Wang, D. StJohn, and M. Dargusch: JOM J. Miner. Met. Mater. Soc., 2021, vol. 73, pp. 3873–82.

    Article  CAS  Google Scholar 

  7. L.M. Zhang, H.N. Liu, N. Li, J. Wang, R. Zhang, H. Xing, and K.K. Song: J. Mater. Res., 2016, vol. 31, pp. 396–404.

    Article  CAS  Google Scholar 

  8. Z. Xu, X. Wang, D. Liang, H. Zhong, N. Pei, Y. Gong, and Q. Zhai: Mater. Sci. Technol., 2015, vol. 31, pp. 1595–600.

    Article  CAS  Google Scholar 

  9. Y.H. Zhang, C.J. Song, L. Zhu, H.X. Zheng, H.G. Zhong, Q.Y. Han, and Q.J. Zhai: Metall. Mater. Trans. B, 2011, vol. 42, pp. 604–11.

    Article  CAS  Google Scholar 

  10. N. Li, L.M. Zhang, R. Zhang, P.F. Yin, H. Xing, and H.J. Wu: Metals, 2019, vol. 9, p. 571.

    Article  CAS  Google Scholar 

  11. W.J. Wang, T.C. Yuan, R.D. Li, X.Y. Zhu, H.H. Li, W.J. Lin, L.B. Li, and D. Zheng: J. Electroanal. Chem., 2019, vol. 847, 113250.

    Article  CAS  Google Scholar 

  12. J. Zhu, T.M. Wang, F. Cao, H.W. Fu, Y.N. Fu, H.L. Xie, and T.Q. Xiao: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1319–23.

    Article  Google Scholar 

  13. T. Ma, X.S. Sun, Y.A. Ning, and W.X. Hao: High Temp. Mater. Process., 2021, vol. 40, pp. 382–88.

    Article  CAS  Google Scholar 

  14. H.X. Jiang, J.Z. Zhao, C.P. Wang, and X.J. Liu: Mater. Lett., 2014, vol. 132, pp. 66–9.

    Article  CAS  Google Scholar 

  15. B.Y. Gao, X.R. Meng, Z.Q. Cao, and F. Mao: Mater. Today Commun., 2021, vol. 29, 102825.

    Article  CAS  Google Scholar 

  16. B.Y. Geng, R.F. Zhou, Y.K. Li, Q.P. Wang, and Y.H. Jiang: Mater. Res. Express, 2020, vol. 7, 096506.

    Article  CAS  Google Scholar 

  17. H.Y. Lv, R.F. Zhou, L. Li, H.T. Ni, J. Zhu, and T. Feng: Materials, 2018, vol. 11, p. 2220.

    Article  Google Scholar 

  18. H.X. Jiang, J. He, and J.Z. Zhao: Sci. Rep., 2015, vol. 5, p. 12680.

    Article  Google Scholar 

  19. G.M. Ying, W.L. Wang, H.H. Zhang, and J. Zeng: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1608–16.

    Article  CAS  Google Scholar 

  20. J.Z. Zhao, L. Ratke, J. Jia, and Q.C. Li: J. Mater. Sci. Technol., 2002, vol. 18, pp. 197–205.

    Google Scholar 

  21. L. Gránásy and L. Ratke: Scr. Metall. Mater., 1993, vol. 28, pp. 1329–34.

    Article  Google Scholar 

  22. T. Iida and R.I.L. Guthrie: The Thermophysical Properties of Metallic Liquids: Fundamentals, 1st ed. Oxford University Press, Oxford, 2015, p. 285.

    Book  Google Scholar 

  23. Y.Q. Li, J.Z. Zhao, H.X. Jiang, and J. He: Acta Metall. Sin., 2022, vol. 58, pp. 1072–82.

    CAS  Google Scholar 

  24. R.S. Qin and B.L. Zhou: Int. J. Non-Equilib. Process., 1998, vol. 11, pp. 77–86.

    CAS  Google Scholar 

  25. J. Zhao and L. Ratke: Scr. Mater., 1998, vol. 39, pp. 181–88.

    Article  CAS  Google Scholar 

  26. D. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.

    Article  CAS  Google Scholar 

  27. H.X. Jiang and J.Z. Zhao: Chin. Phys. Lett., 2012, vol. 29, 088104.

    Article  Google Scholar 

  28. H.L. Li and J.Z. Zhao: Appl. Phys. Lett., 2008, vol. 92, 241902.

    Article  Google Scholar 

  29. C.K. Deng, H.X. Jiang, J.Z. Zhao, J. He, and L. Zhao: Acta Metall. Sin., 2020, vol. 56, pp. 212–20.

    CAS  Google Scholar 

  30. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  31. J. He, J.Z. Zhao, and L. Ratke: Acta Mater., 2006, vol. 54, pp. 1749–57.

    Article  CAS  Google Scholar 

  32. H.L. Li, J.Z. Zhao, Q.X. Zhang, and J. He: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3308–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supported from the National Key Research and Development Program of China [Grant Number 2021YFA0716303], the National Natural Science Foundation of China (Nos. 51971227, 51974288, 52174380), the China's Manned Space Station Project, the Science and Technology Project of Fujian Province [Grant Number 2020T3037], and the Space Utilization System of China Manned Space Engineering (Grant Number KJZ-YY-NCL06).

Author information

Authors and Affiliations

Authors

Contributions

HJ and JZ conceived the idea and designed the experiments. YL, HJ, HS, LZ and JH conducted the experiments, YL prepared the samples, conducted materials characterization and performed the numerical simulations. YL and HJ drafted the manuscript. HJ and JZ interpreted, discussed and edited the manuscript.

Corresponding authors

Correspondence to Hongxiang Jiang or Jiuzhou Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, H., Sun, H. et al. Microstructure Evolution of the Pb–Al Alloy Solidified Under the Effect of Electric Current Pulses. Metall Mater Trans B 54, 2564–2574 (2023). https://doi.org/10.1007/s11663-023-02857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02857-7

Navigation