Skip to main content
Log in

Pressure Distribution and Flow Rate Behavior in Continuous-Casting Slide-Gate Systems: PFSG

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Quantifying the pressure distribution and flow rate in the metal delivery system from the tundish to the mold is important to understand nozzle clogging due to air aspiration, argon bubble size, and other important phenomena in continuous casting of steel. A one-dimensional pressure energy model, PFSG, is presented here to calculate pressure distribution and flow rate in slide-gate nozzle systems for argon-molten steel flow systems including argon gas expansion by solving a system of Bernoulli equations. PFSG is a user-friendly MATLAB-based software package with an intuitive Graphical User Interface capable of inverse solutions that enables users to conduct parametric studies in seconds. The model predictions is verified with computational fluid dynamics simulations and validated with plant measurements and water model measurements, with errors of less than 6 pct. The verified and validated PFSG model is then applied to investigate the effect of different casting conditions on the flow rate and pressure distribution. For a given slide gate opening, the flow rate increases with increasing distance from the tundish level to the mold level, increasing SEN diameter, and decreasing argon gas injection rate. The slide-gate opening fraction that produces the minimum pressure is almost independent of casting conditions, except for SEN bore diameter. This critical opening fraction, which is most detrimental for air aspiration, increases from 50 to 70 pct with increasing SEN diameter by 13 pct for the system studied. The minimum pressure worsens (decreases) with increasing tundish height and/or nozzle bore diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Bai and B.G. Thomas: Metall. Trans. B., 2001, vol. 32B(4), pp. 707–22.

    Article  CAS  Google Scholar 

  2. H. Yang, H. Olia, and B.G. Thomas: Metals., 2021, https://doi.org/10.3390/met11010116).

    Article  Google Scholar 

  3. L. Zhang, Y. Wang, and X. Zuo: Metall Trans. B., 2008, vol. 39B(4), pp. 534–50.

    Article  CAS  Google Scholar 

  4. K.G. Rackers and B.G. Thomas: Proc. of 78th Steelmaking Conf., The Iron and Steel Society, Warrendale, PA, vol. 78, 1995, pp. 723–34.

  5. S. Yokoya, S. Takagi, H. Souma, M. Iguchi, Y. Asako, and S. Hara: ISIJ Int., 1989, vol. 38, pp. 1346–52.

    Article  Google Scholar 

  6. S.M. Cho, S.H. Kim, R. Chaudhary, B.G. Thomas, H.J. Shin, W.R. Choi, and S.K. Kim: Proc. AISTech, Indianapolis, IN, AIST, Warrendale, PA, vol. 2, 2011, pp. 669–79.

  7. Y. Murakami, S. Kodama, and S. Konuma: Int. J. Fatigue., 1989, vol. 11(5), pp. 291–98.

    Article  CAS  Google Scholar 

  8. A.D. Wilson: J. Eng. Mater. Technol., 1979, vol. 101 (3), p. 265.

  9. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Trans. B., 2006, vol. 37B(3), pp. 361–79.

    Article  CAS  Google Scholar 

  10. POSCO: Korean Patent Application 10-2012-0026720, 2012.

  11. J. Savolainen, A. Rousu, T. Fabritius, O. Mattila, and P. Sulasalmi: Steel Res. Int., 2010, vol. 81, pp. 980–86.

    Article  CAS  Google Scholar 

  12. R. Liu, B.G. Thomas, J. Sengupta, S.D. Chung, and M. Trinh: ISIJ Int., 2014, vol. 54, pp. 2314–23.

    Article  CAS  Google Scholar 

  13. M. Javurek, M. Thumfart, and R. Wincor: Steel Res. Int., 2010, vol. 81, pp. 668–74.

    Article  CAS  Google Scholar 

  14. H. Yang, S.P. Vanka, and B.G. Thomas: JOM., 2018, vol. 70, pp. 2148–56.

    Article  CAS  Google Scholar 

  15. R. Liu and B.G. Thomas: Metall. Trans. B., 2015, vol. 46(1), pp. 388–405.

    Article  CAS  Google Scholar 

  16. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Trans. B., 2007, vol. 38B, pp. 63–83.

    Article  CAS  Google Scholar 

  17. Y. Wang and L. Zhang: Metall. Trans. B., 2011, vol. 42B, pp. 1319–51.

    Article  Google Scholar 

  18. W. Chen, Y. Ren, and L. Zhang: Steel Res. Int., 2019, vol. 90, Article No. 1800287, https://doi.org/10.1002/srin.201800287.

  19. B.G. Thomas: Steel Res. Int., 2018, vol. 89, pp. 1–21.

    Article  Google Scholar 

  20. H. Yang, S.P. Vanka, and B.G. Thomas: ISIJ Int., 2019, vol. 59, pp. 956–72.

    Article  CAS  Google Scholar 

  21. S.M. Cho, M. Liang, H. Olia, L. Das, and B.G. Thomas: TMS Annual Meeting, Pittsburgh, PA, TMS, Warrendale, PA, 2020, pp. 1161–73, https://doi.org/10.1007/978-3-030-36296-6_108.

  22. H. Olia, H. Yang, S.M. Cho, M. Zappulla, and B.G. Thomas: Proc. AISTech, AIST, Warrendale, PA, 2020, pp. 1964–74, https://doi.org/10.33313/380/212.

  23. R. Liu, B. Forman, H. Yin, and Y. Lee: Proc. AISTech, Philadelphia, PA, 2018, vol. 2, pp. 1793–1802.

  24. H. Yang, S. Vanka, and B.G. Thomas: J. Fluids Eng., 2018, vol. 140, 101202 (1–12).

  25. R. Liu and B.G. Thomas: Metall. Trans. B., 2014, vol. 4B, pp. 388–405.

    Google Scholar 

  26. Fsolve: Matlab subroutine from MathWorks Web Resource, https://www.mathworks.com/help/optim/ug/fsolve, accessed 25 July 2021.

  27. E.W. Weisstein: Circle–Circle Intersection (From MathWorld—A Wolfram Web Resource), http://mathworld.wolfram.com/Circle-CircleIntersection.html, accessed 29 September 2021.

  28. F.M. White: Fluid Mechanics, 7th. ed., McGraw Hill, New York, 2011, pp. 356–94.

  29. Crane Co.: Flow of Fluids Through Valves Fittings and Pipes, Crane Co., New York, 1999, pp. 2-11–2-12.

  30. H. Oertel: Prandtl-Essentials of Fluid Mechanics, 2nd ed. Springer, New York, 2004, p. 164.

    Book  Google Scholar 

  31. G.J.O. Jameson: Math. Gaz., 2014, vol. 98, pp. 227–34.

    Article  Google Scholar 

  32. B.G. Thomas and X. Huang: Metall. Trans. B., 1994, vol. 25B, pp. 527–47.

    Article  CAS  Google Scholar 

  33. B.E. Launder and D.B. Spalding: Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972, pp. 157–62.

    Google Scholar 

  34. D.K. Lilly: Phys. Fluids A., 1992, vol. 4, pp. 633–35.

    Article  Google Scholar 

  35. ANSYS FLUENT 18.1-Theory Guide, ANSYS. Inc., Canonsburg, PA, USA, 2017.

  36. S.-M. Cho, S.-H. Kim, and B.G. Thomas: ISIJ Int., 2014, vol. 54, pp. 845–54.

    Article  CAS  Google Scholar 

  37. H. Werner and H. Wengle: 8th Symp. Turbulent Shear Flows, Munich, Germany, 1991, pp. 155–68.

  38. L. Das and B.G. Thomas: CCC Annual Meeting, Continuous Casting Center, Colorado School of Mines, Golden, CO, USA, 15 August 2019.

  39. S.-M. Cho and B.G. Thomas: CCC Annual Meeting, Continuous Casting Center, Colorado School of Mines, Golden, CO, USA, 15 August 2018.

Download references

Acknowledgments

The authors thank ArcelorMittal, Baosteel, and POSCO for their assistance in collecting and providing plant data, specifically Dr. Tatha Bhattacharya, ArcelorMittal, Dr. Xiaoming Ruan , Baosteel, and Dr. Shin-Eon Kang, POSCO for help with the plant measurements. Support from the Continuous Casting Center at Colorado School of Mines, and the National Science Foundation GOALI grant (Grant No. CMMI 18-08731) are gratefully acknowledged. Provision of FLUENT licenses through the ANSYS Inc. academic partnership program is also much appreciated. The authors specially thank Dr. Ken Morales, AK Steel, Dirk van der Plas, Tata Steel, Alexandre Dolabella Resende, RHI Magnesita, and Dr. Matthew Zappulla, Colorado School of Mines, for their kind comments and helpful feedback on PFSG.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Wall Friction Calculation for Tapered Pipe

Appendix: Wall Friction Calculation for Tapered Pipe

Wall friction equation for a pipe with constant diameter (i.e. not tapered), discussed in fluid mechanics reference book,[28] is defined as:

$$h= \frac{1}{2}f\frac{L}{D}\frac{{V}^{2}}{g}$$
(A1)

where h is pressure head loss due to wall friction [m], f friction factor, L pipe length [m], D pipe diameter [m], V fluid velocity [m/s], and g Earth’s gravitation acceleration [m/s2].

Now, consider a tapered pipe as shown in Figure A1.

Fig. A1
figure 21

Schematic of tapered length of nozzle (pipe)

For a very small portion of pipe with the length of dx, it is true to say:

$$\text{d}h= \frac{1}{2}f\frac{\text{d}x}{D}\frac{{V}^{2}}{g}$$
(A2)

Consider the continuity equation:

$$V= \frac{{V}_{1}{D}_{1}^{2}}{{D}^{2}}$$
(A3)

where V and D are velocity and diameter of the section [m/s] and [m], respectively.

Also from Figure A1:

$$x= \frac{{D}_{1}-D}{2\tan\theta }$$
(A4)

where \(\theta\) is the taper angle [rad].

Therefore:

$$\text{d}x= \frac{-\text{d}D}{2\tan\theta }$$
(A5)

Substituting Eqs. [A3] and [A5] into Eq. [A2] gives:

$$dh= \frac{1}{2}f\frac{{V}_{1}^{2}{D}_{1}^{4}}{{D}^{5}g}\frac{-dD}{2\tan\theta }$$
(A6)

Integrating Eq. [A6] over the whole domain (from \({D}_{1}\) to \({D}_{2}\)) and simplifying gives:

$$h= \frac{1}{16}\frac{f}{g}\frac{{V}_{1}^{2}}{{D}_{2}^{4}}\frac{\left({D}_{1}^{4}-{D}_{2}^{4}\right)}{\tan\theta }$$
(A7)

Insert into Figure A1:

$$\tan\theta = \frac{{D}_{1}-{D}_{2}}{2L}$$
(A8)

Finally, substituting Eq. [A8] into Eq. [A7] gives the pressure loss in a tapered pipe due to wall friction:

$$h= \frac{1}{8}f\frac{L}{g}\frac{{V}_{1}^{2}}{{D}_{2}^{4}}\left({D}_{1}+ {D}_{2}\right)\left({D}_{1}^{2}+ {D}_{2}^{2}\right)$$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olia, H., Yang, H., Cho, SM. et al. Pressure Distribution and Flow Rate Behavior in Continuous-Casting Slide-Gate Systems: PFSG. Metall Mater Trans B 53, 1661–1680 (2022). https://doi.org/10.1007/s11663-022-02476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02476-8

Navigation