Skip to main content
Log in

A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

AlSi10Mg is the most widely studied Al alloy used to produce components by laser-based powder bed fusion (LPBF), also known as selective laser melting. Several papers have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the LPBF AlSi10Mg alloy, overlooking, however, the particular microstructure induced by rapid solidification. This paper reports on the effects of a T5 heat treatment and a novel T6 heat treatment on microstructure and mechanical behavior of the LPBF AlSi10Mg alloy, consisting of rapid solution (10 minutes at 510 °C) followed by artificial aging (6 hours at 160 °C). The short solution soaking time reduced the typical porosity growth occurring at the high temperature and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it limited the diffusion processes, increasing the amount of Mg and Si in solid solution available for precipitation hardening and avoiding the microstructural coarsening. As a result, the strength-ductility balance was improved by increasing both yield strength and elongation to failure, respectively of about 14 and 7 pct compared with the best solution among those reported in the literature for conventional T6 heat treatment of LPBF AlSi10Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  2. F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi: Materials., 2017, vol. 1, p. 76.

    Article  Google Scholar 

  3. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague: Prog. Mater. Sci., 2019, vol. 106, p. 100578.

    Article  CAS  Google Scholar 

  4. U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, and M.M. Attallah: Mater. Des., 2016, vol. 105, pp. 212–22.

    Article  CAS  Google Scholar 

  5. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt: Mater. Sci. Eng. A., 2016, vol. 667, pp. 139–46.

    Article  CAS  Google Scholar 

  6. L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan, and L.J. Guo: Mater. Sci. Eng. A., 2018, vol. 734, pp. 299–310.

    Article  CAS  Google Scholar 

  7. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann: Phys. Proc., 2011, vol. 12, pp. 271–8.

    Article  CAS  Google Scholar 

  8. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno: Prog. Mater Sci., 2015, vol. 74, pp. 401–77.

    Article  CAS  Google Scholar 

  9. J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi: J. Mater. Sci. Technol., 2019, vol. 35(2), pp. 270–84.

    Article  Google Scholar 

  10. L. Thijs, K. Kempen, J. Kruth, and J.V. Humbeeck: Acta Mater., 2013, vol. 61(5), pp. 1809–19.

    Article  CAS  Google Scholar 

  11. X. Liu, C. Zhao, X. Zhou, Z. Shen, and W. Liu: Mater. Design., 2019, vol. 168, p. 107677.

    Article  CAS  Google Scholar 

  12. N. Read, W. Wang, K. Essa, and M.M. Attallah: Mater. Design., 2015, vol. 65, pp. 417–24.

    Article  CAS  Google Scholar 

  13. J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, and M.H. Loretto: Acta Mater., 2016, vol. 117, pp. 311–20.

    Article  CAS  Google Scholar 

  14. A. Hadadzadeh, B.S. Amirkhiz, and M. Mohammadi: Mater. Sci. Eng., A., 2019, vol. 739, pp. 295–300.

    Article  CAS  Google Scholar 

  15. M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch: Characterization., 2018, vol. 137, pp. 119–26.

    Article  Google Scholar 

  16. Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang, and R.D.K. Misra: Mater. Sci. Eng. A., 2019, vol. 740–741, pp. 148–56.

    Article  Google Scholar 

  17. P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, and Ya. Zhou: Appl. Surf. Sci., 2017, vol. 408, pp. 38–50.

    Article  CAS  Google Scholar 

  18. M. Tang and P.C. Pistorius: JOM., 2017, vol. 69, pp. 516–22.

    Article  CAS  Google Scholar 

  19. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu: Addit. Manuf., 2018, vol. 22, pp. 165–75.

    CAS  Google Scholar 

  20. L. Tonelli, E. Liverani, G. Valli, A. Fortunato, and L. Ceschini: Int J Adv Manuf Technol., 2020, vol. 106, pp. 371–83.

    Article  Google Scholar 

  21. B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh: Scripta Mater., 2017, vol. 141, pp. 45–9.

    Article  CAS  Google Scholar 

  22. J. Fite, S.E. Prameela, J.A. Slotwinski, and T.P. Weihs: Add. Manuf., 2020, vol. 36, p. 101429.

    CAS  Google Scholar 

  23. K.G. Prashanth and J. Eckert: J. Alloy. Compd., 2017, vol. 707, pp. 27–34.

    Article  CAS  Google Scholar 

  24. J. Fiocchi, C.A. Biffi, C. Colombo, L.M. Vergani, and A. Tuissi: JOM., 2020, vol. 72, pp. 1118–27.

    Article  CAS  Google Scholar 

  25. R. Casati, M. Hamidi, M. Coduri, V. Tirelli, and M. Vedani: Metals., 2018, vol. 8, p. 954.

    Article  CAS  Google Scholar 

  26. L. Tonelli, E. Liverani, A. Morri, and L. Ceschini: Metall Mater Trans B., 2021, vol. 52B, pp. 2484–96.

    Article  Google Scholar 

  27. I. Rosenthal, R. Shneck, and A. Stern: Mater. Sci. Eng. A., 2018, vol. 729, pp. 310–22.

    Article  CAS  Google Scholar 

  28. N.E. Uzan, R. Shneck, O. Yeheskel, and N. Frage: Mater. Sci. Eng. A., 2017, vol. 704, pp. 229–37.

    Article  CAS  Google Scholar 

  29. B. Mfusi, N. Mathe, P. Popoola, L. Tshabalala, in IOP Conference Series: Materials Science and Engineering, 2019, 655, 012027.

  30. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi: Mater. Sci. Eng., A., 2017, vol. 704, pp. 218–28.

    Article  CAS  Google Scholar 

  31. E. Padovano, C. Badini, A. Pantarelli, F. Gili, and F. Daiuto: J. Alloys Compd., 2020, vol. 831, p. 154822.

    Article  CAS  Google Scholar 

  32. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi: Mater. Sci. Eng. A., 2016, vol. 663, pp. 116–25.

    Article  CAS  Google Scholar 

  33. J.N. Domfang Ngnekou, Y. Nadot, G. Henaff, J. Nicolai, W.H. Kan, J.M. Cairney, and L. Ridosz: Int. J. Fatigue., 2019, vol. 119, pp. 160–72.

    Article  CAS  Google Scholar 

  34. F. Alghamdi, X. Song, A. Hadadzadeh, B. Shalchi-Amirkhiz, M. Mohammadi, and M. Haghshenas: Mater. Sci. Eng. A., 2020, vol. 783, p. 139296.

    Article  CAS  Google Scholar 

  35. A. Iturrioz, E. Gil, M.M. Petite, F. Garciandia, A.M. Mancisidor, and M. San-Sebastian: Weld World., 2018, vol. 62, pp. 885–92.

    Article  CAS  Google Scholar 

  36. W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, and J.M. Cairney: Add Manuf., 2019, vol. 29, p. 100805.

    CAS  Google Scholar 

  37. M. Tocci, A. Pola, M. Gelfi, G. Marcello, and M.L.V. Giovina: Metall Mater Trans A., 2020, vol. 51A, pp. 4799–811.

    Article  Google Scholar 

  38. A. Mertens, O. Dedry, D. Reuter, O. Rigo, J. Lecomte-Beckers: in Proceedings of the 26th International Solid Freeform Fabrication Symposium, Dayton, OH, USA, 23–26 June 2015, pp. 1007–16.

  39. C. Zhang, H. Zhu, H. Liao, Y. Cheng, Z. Hu, and X. Zeng: Int. J. Fatigue., 2018, vol. 116, pp. 513–22.

    Article  CAS  Google Scholar 

  40. C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP., 2018, vol. 71, pp. 348–53.

    Article  Google Scholar 

  41. SLM Solution Group AG, DE, https://www.slm-solutions.com/it/prodotti/machines/slmr500/

  42. International Organization for Standardization: ISO 14707:2015: Surface Chemical Analysis—Glow Discharge Optical Emission Spectrometry (GD-OES)—Introduction to Use, International Organization for Standardization: Geneva, Switzerland, 2015.

  43. R. Lumley, R. O’Donnell, D.R. Gunasegaram, and M. Givord: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 2564–74.

    Article  CAS  Google Scholar 

  44. R.N. Lumley, I.J. Polmear, and P.R. Curtis: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 1716–26.

    Article  CAS  Google Scholar 

  45. L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, and Y. Sohn: Mater. Charact., 2018, vol. 143, pp. 5–17.

    Article  CAS  Google Scholar 

  46. ASM International: ASTM B962–17: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASM International, West Conshohocken, PA, 2017.

    Google Scholar 

  47. K.H. Eckelmeyer: X-Ray Diffraction for Bulk Structural Analysis, Metals Handbook Desk Edition, 2nd ed. ASM international, New York, 1998.

    Google Scholar 

  48. G. Poli, R. Sola, and P. Veronesi: Mater. Sci. Eng. A., 2006, vol. 441, pp. 149–56.

    Article  Google Scholar 

  49. ASM International: ASTM E3–11(2017): Standard Guide for Preparation of Metallographic Specimens, ASM International, West Conshohocken, PA, 2017.

    Google Scholar 

  50. ASM International: ASTM E407–07(2015): Standard Practice for Microetching Metals and Alloys, ASM International, West Conshohocken, PA, 2015.

    Google Scholar 

  51. M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater Sci. Eng. A., 1999, vol. 265(1–2), pp. 153–73.

    Article  Google Scholar 

  52. ASM International: ASTM E92–17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASM International, West Conshohocken PA, 2017.

    Google Scholar 

  53. International Organization for Standardization: ISO 6892-1:2009, Metallic Materials–Tensile Testing–Part 1: Method of Test at Room Temperature, International Organization for Standardization, Geneva, Switzerland, 2009.

  54. International Organization for Standardization: ISO 6892-2:2011, Metallic Materials–Tensile Testing–Part 2: Method of Test at Elevated Temperature, International Organization for Standardization, Geneva, Switzerland, 2011.

  55. A. Bendijk, R. Delhez, L. Katgerman, T.H. De Keijser, E.J. Mittemeijer, and N.M. Van Der Pers: J Mater Sci., 1980, vol. 15, pp. 2803–10.

    Article  CAS  Google Scholar 

  56. S. Marola, D. Manfredi, G. Fiore, M.G. Poletti, M. Lombardi, P. Fino, and L. Battezzati: J. Alloy. Compd., 2018, vol. 742, pp. 271–9.

    Article  CAS  Google Scholar 

  57. Z. Zhang and D.L. Chen: Mater. Sci. Eng. A., 2008, vol. 483–484, pp. 148–52.

    Article  Google Scholar 

  58. T. Yang, K. Wang, W. Wang, P. Peng, L. Huang, K. Qiao, and Y. Jin, JOM, 2019, 71.

  59. Z. Yang, J. Fan, Y. Liu, J. Nie, Z. Yang, and Y. Kang: Materials., 2021, vol. 14, p. 1219.

    Article  CAS  Google Scholar 

  60. A.K. Gupta, D.J. Lloyd, and S.A. Court: Mater. Sci. Eng. A., 2001, vol. 316(1–2), pp. 11–7.

    Article  Google Scholar 

  61. N.T. Aboulkhair, C. Tuck, A. Ian, M. Ian, and M.E. Nicola: Metall Mater Trans A., 2015, vol. 46A, pp. 3337–41.

    Article  Google Scholar 

  62. L. Girelli, M. Tocci, M. Gelfi, and A. Pola: Mater. Sci. Eng. A., 2019, vol. 739, pp. 317–28.

    Article  CAS  Google Scholar 

  63. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Mater. Des., 2012, vol. 34, p. 1.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by the RIMMEL project, CUP B91F18000370009, POR FESR EMILIA ROMAGNA 2014-2020, Asse 1 - Ricerca e Innovazione. We wish to thank Dr. Ramona Sola at the CIRI MAM (University of Bologna) for XRD analyses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Di Egidio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 29, 2021; accepted October 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Egidio, G., Ceschini, L., Morri, A. et al. A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments. Metall Mater Trans B 53, 284–303 (2022). https://doi.org/10.1007/s11663-021-02365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02365-6

Navigation