Skip to main content
Log in

Thermodynamic Properties and Viscosities of CaO-SiO2-MgO-Al2O3 Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, the effects of Al2O3, basicity, and MgO/Al2O3 ratio on the heat capacity, enthalpy change, and viscosity of CaO-SiO2-MgO-Al2O3 slags at 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C) were investigated. The heat capacity of the slag increased with increasing Al2O3, basicity, and MgO/Al2O3 ratio in the experimental temperature range. The enthalpy change increased with increasing Al2O3 content and MgO/Al2O3 ratio, and decreasing basicity. Under the fixed heat quantity of the slag, the addition of Al2O3 would result in a decrease of slag temperature and increase of slag viscosity. The effect of decreasing temperature on the viscosity was more significant than increasing Al2O3 content. Increases of slag basicity led to the increased slag temperature and the decreased viscosity which was due to the increased slag temperature. The viscosity change rate with different temperatures was more pronounced than that of different slag compositions. The change of the slag temperature at fixed heat quantity would be opposite due to different expressions of MgO/Al2O3 ratio. In addition, when the heat decrement of the slag was fixed, the slag temperature rose first with the increase of MgO/Al2O3 ratio and then decreased, while the viscosity decreased gradually. The viscosity fluctuation caused by different heat decrements reduced as well with increasing MgO/Al2O3 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Q.H. Li, J.T. Gao, Y.L. Zhang, Z.Q. An, and Z.C. Guo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 346-56.

    Article  Google Scholar 

  2. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 911–15.

    Article  Google Scholar 

  3. P.C. Li and X.J. Ning: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 446–57.

    Google Scholar 

  4. K.X. Jiao, J. L. Zhang, C. L. Chen, Z.J. Liu and X. Jiang: ISIJ Int, 2017, vol.57, pp.983-98.

    Article  Google Scholar 

  5. A. Kondratiev, E. Jak, and P.C. Hayes: JOM, 2002, vol. 54, pp. 41–45.

    Article  Google Scholar 

  6. I. Ye, C. Ryu and J.H. Koo: Appl. Therm. Eng, 2015, vol. 87, pp. 175–84.

    Article  Google Scholar 

  7. L. Shao and S. Henrik: Ind. Eng. Chem. Res, 2013, vol. 52, pp. 5479–88.

    Article  Google Scholar 

  8. W.M. Husslage, T. Bakker, A.G.S. Steeghs, M.A. Reuter, and R.H. Heerema: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 765–76.

    Article  Google Scholar 

  9. M. Hino, T. Nagasaka, A. Katsumata, K. Higuchi, K. Yamaguchi, and N. Kon-No: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 671–83.

    Article  Google Scholar 

  10. K.X. Jiao, J. L. Zhang, Z.Y. Chang, C. L. Chen and Y.X. Liu: Steel Res, 2017, vol.88, pp.1-9.

    Google Scholar 

  11. H. Kim, W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int, 2010, vol. 81, pp. 261–64.

    Article  Google Scholar 

  12. I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611–30.

    Article  Google Scholar 

  13. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75.

    Article  Google Scholar 

  14. H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 5–12.

    Article  Google Scholar 

  15. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 150–53.

    Article  Google Scholar 

  16. X. F. Zhang, T. Jiang, X.X. Xue, and B. S. Hu. Steel Res. Int, 2016, vol. 87, pp. 1-8.

    Article  Google Scholar 

  17. F. M. Shen, H. Y. Zheng, X. Jiang, and G. Wei: Iron and Steel, 2014, vol.49, 1-7.

    Google Scholar 

  18. Y.S. Lee, D.J. Min, and S.M. Jung: ISIJ Int., 2004, vol. 44, pp. 1283–90

    Article  Google Scholar 

  19. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  20. A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 623–38.

    Article  Google Scholar 

  21. K.X. Jiao, X.Y. Fan, J.L. Zhang, K.D. Wang and Y.A. Zhao: Ceram. Int, 2018, vol.44, pp.19981-8.

    Article  Google Scholar 

  22. M. Suzuki and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1435–50.

    Article  Google Scholar 

  23. M. Suzuki and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1451–65.

    Article  Google Scholar 

  24. B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690–710.

    Google Scholar 

  25. H. Doweidar: J. Non-Cryst. Solids, 1998, vol. 240, pp. 55–65.

    Article  Google Scholar 

  26. D.M. Zirl and S.H. Garofalini: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2848–56.

    Article  Google Scholar 

  27. B.O. Mysen and M.J. Toplis:. Am. Miner, 2007, vol. 92, pp. 933–46.

    Article  Google Scholar 

  28. B.O. Mysen: Am. Miner., 1990, vol. 75, pp. 120–34.

    Google Scholar 

  29. S.F. Zhang, X. Zhang, W. Liu, X.W. Lv, C.G. Bai, and L. Wang: J. Non-Cryst. Solids, 2014, vol. 402, pp. 214–22.

    Article  Google Scholar 

  30. K. Zheng, Z. Zhang, F. Yang, and S. Sridhar: ISIJ Int., 2012, vol. 52, pp.342–49.

    Article  Google Scholar 

  31. J.B. Kim and I. Sohn: ISIJ Int., 2014, vol. 54, pp. 657–63.

    Article  Google Scholar 

  32. J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1945, vol. 28, pp. 310–16.

    Article  Google Scholar 

  33. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang: Int. J. Min. Met. Mater, 2014, vol. 21, pp. 353–62.

    Article  Google Scholar 

  34. J.H. Park, D.J. Min, and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 344–51.

    Article  Google Scholar 

  35. H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 324–30.

    Article  Google Scholar 

  36. G.H. Kim and I. Sohn: ISIJ Int., 2012, vol. 52, pp. 68–73.

    Article  Google Scholar 

  37. H. Flood and T. Förland: Acta. Chem. Scand, 1947, vol. 1, pp. 592–604.

    Article  Google Scholar 

  38. J.B. Kim and I. Sohn: J. Non-Cryst. Solids, 2013, vol. 379, pp. 235–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation for Young Scientists of China (51704019), Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07402001), and the Fundamental Research Funds for the Central Universities (FRF-BD-17-010A and FRF-TP-17-040A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Xin Jiao.

Additional information

Manuscript submitted July 7, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, KX., Chang, ZY., Chen, C. et al. Thermodynamic Properties and Viscosities of CaO-SiO2-MgO-Al2O3 Slags. Metall Mater Trans B 50, 1012–1022 (2019). https://doi.org/10.1007/s11663-018-1490-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1490-6

Navigation