Skip to main content
Log in

Strain-induced martensite formation in austenitic stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ measurements of the strain-induced martensitic transformation (SMTs) of SUS304 stainless steel that takes place during tensile loading at room temperature were performed around the notch of a dumbbell-shaped specimen where high stress concentration occurs. Even in the low plastic strain regime, with loading to 0.2 % proof stress (σ 0.2), some SMTs occurred. However, the area fraction of the Fe-α′-martensite phase did not increase significantly even when the sample was loaded to the ultimate tensile strength (σ UTS). After the σ UTS point, the total fraction of the Fe-α′ phase increased dramatically to the fracture point (σ f). The phase textures of Fe-α′ and Fe-γ were almost equal at (σ UTS − σ f)/2, and the Fe-α′ phase was observed over almost the entire measurement area around the notch at the σ f point. However, the area fraction of the Fe-α′ phase at the σ f point decreased far away from the fracture surface, to an extent that the total fraction of the Fe-α′ phase was almost the same as that of the Fe-γ phase in an area about 1.7 mm from the fracture face. Different martensite characteristics were detected in the stainless steel, depending on the applied load level. This was attributed to the severity of deformation. In particular, deformation twinning, created around σ UTS, and severe plastic deformation before fracture make a strong Fe-α′ phase. Details of this phenomenon are interpreted using various approaches, including electron backscatter diffraction analysis and finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nakajima M, Akita M, Uematsu Y, Tokaji K (2010) Proc Eng 2:323

    Article  CAS  Google Scholar 

  2. Jia N, Peng RL, Chai GC, Johansson S, Wang YD (2008) Mater Sci Eng A 491:425

    Article  Google Scholar 

  3. Chen X, Wang Y, Gong M, Xia Y (2004) J Mater Sci 39:4869. doi:10.1023/B:JMSC.0000035327.55210.99

    Article  CAS  Google Scholar 

  4. Okayasu M, Sato K, Takasu S (2010) J Mater Sci 45:1220. doi:10.1007/s10853-009-4068-5

    Article  CAS  Google Scholar 

  5. Dan WJ, Zhang WG, Li SH, Lin ZQ (2007) Comput Mater Sci 40:101

    Article  CAS  Google Scholar 

  6. Tamura I (1982) Met Sci 16:245

    CAS  Google Scholar 

  7. Zong-yu X, Sheng Z, Xi-Cheng W (2010) J Iron Steel Res Int 17:51

    Google Scholar 

  8. Beese AM, Mohr D (2011) Acta Mater 59:2589

    Article  CAS  Google Scholar 

  9. Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Acta Mater 51:1871

    Article  CAS  Google Scholar 

  10. Varma SK, Kalyanam J, Murr LE, Srinivas V (1994) J Mater Sci Lett 13:107

    Article  CAS  Google Scholar 

  11. Murr LE, Staudhammer KP, Hecker SS (1982) Metall Trans A 13A:627

    Google Scholar 

  12. Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials, 4th edn. Wiley, New York, p 18

    Google Scholar 

  13. Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, Inc, New York, p 314

    Google Scholar 

  14. Ogata T, Yuri T, Ono Y, Cryo J (2007) Soc Jpn 42:10 in Japanese

    CAS  Google Scholar 

  15. Shen YF, Li XX, Sun X, Wang YD, Zuo L (2012) Mater Sci Eng A 552:514

    Article  CAS  Google Scholar 

  16. Mirzadeh H, Najafizadeh A (2010) Mater Sci Eng A 527:1856

    Article  Google Scholar 

  17. Das A, Sivaprasad S, Ghosh M, Chakraborti PC, Tarafder S (2008) Mater Sci Eng A 486:283

    Article  Google Scholar 

  18. Talonen J, Nenonen P, Pape G, Hänninen H (2005) Metall Mater Trans A 36A:421

    Article  CAS  Google Scholar 

  19. Nebel Th, Elfler D (2003) Sādhanā 28:187

    CAS  Google Scholar 

  20. Lee W-S, Lin C-F (2000) Scr Mater 43:777

    Article  CAS  Google Scholar 

  21. Huang GL, Matlock DK, Krauss G (1989) Metall Trans A 20A:1239

    CAS  Google Scholar 

  22. Muller-Bollenhagen C, Zimmermann M, Christ H-J (2010) Int J Fatigue 32:936

    Article  Google Scholar 

  23. Spencer K, Embury JD, Conlon KT, Véron M, Bréchet Y (2004) Mater Sci Eng A 387–389:873

    Google Scholar 

  24. Hecker SS, Stout MG, Staudhammer KP, Smith JL (1982) Metall Trans A 13A:619

    Google Scholar 

  25. Benzerga AA, Leblond J-B (2010) Adv Appl Mech 44:169

    Article  Google Scholar 

  26. Kinoshita Y, Yardley VA, Tsurekawa S (2011) J Mater Sci 46:4261. doi:10.1007/s10853-010-5241-6

    Article  CAS  Google Scholar 

  27. Choi J-Y, Jin W (1997) Scr Mater 36:99

    Article  CAS  Google Scholar 

  28. Nakajima M, Uematsu Y, Kakiuchi T, Akita M, Tokaji K (2011) Proc Eng 10:299

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was technically supported by Mr. Yuki Sato at Akita Prefectural University in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Okayasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okayasu, M., Fukui, H., Ohfuji, H. et al. Strain-induced martensite formation in austenitic stainless steel. J Mater Sci 48, 6157–6166 (2013). https://doi.org/10.1007/s10853-013-7412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7412-8

Keywords

Navigation