Skip to main content
Log in

Theoretical modeling of densification during activated solid-state sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Activated solid-state sintering relies on the addition of low concentrations of grain boundary segre-gating species to increase diffusion rates. In this article, enhanced diffusion through an activated layer at the grain boundaries has been modeled for the case of tungsten sintered with transition element additions. Both constant heating rates and isothermal sintering are considered. As in classical treatments, sintering is divided into three stages, but modifications are proposed based on recent observations and theories regarding packing coordination, pore morphology, pore location, grain growth, and pore-grain boundary separation. The intermediate and final stages of sintering are al-lowed to overlap based on the amount of closed porosity to account for both pore closure early in the process and the gradual increase in packing coordination with densification. Mean curvature theory is used to estimate pore curvature during the intermediate stage of sintering. In the final stage, pores are modeled on both the corners of a tetrakaidecahedron and on its square facets. The pore location has only a small effect on densification, while the grain boundary mobility is more of a factor. The model allows pore-grain boundary separation to match experimentally measured grain sizes. The model predictions are compared to dilatometer curves of pure tungsten and tungsten sintered with additions of Co, Fe, Ni, and Pd. For the Co- and Fe-activated samples, the model is modified to account for an increase in diffusional activation energy due to dissolution of the activator in tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. German and Z.A. Munir:High Temp. Sci., 1976, vol. 8, pp. 267–80.

    CAS  Google Scholar 

  2. R.M. German and V. Ham:Int. J. Powder Metall. Powder Technol., 1976, vol. 12, pp. 115–25.

    CAS  Google Scholar 

  3. R.M. German and Z.A. Munir:Metall. Trans. A, 1976, vol. 7A, pp 1873–77.

    CAS  Google Scholar 

  4. C.J. Li and R.M. German:Metall. Trans. A, 1983, vol. 14A, pp. 2031- 41.

    CAS  Google Scholar 

  5. G.H. Gessinger and H.F. Fischmeister:J. Less-Common Met., 1972, vol. 27, pp. 129–41.

    Article  CAS  Google Scholar 

  6. G.V. Samsonov and V.l. Yakovlev:Sov. Powder Metall. Met. Ceram., 1967, vol. 6, pp. 548–51.

    Article  Google Scholar 

  7. G.V. Samsonov and V.l. Yakovlev:Sov. Powder Metall. Met. Ceram., 1967, vol. 6, pp. 606–11.

    Article  Google Scholar 

  8. G.V. Samsonov and V.l. Yakovlev:Sov. Powder Metall. Met. Ceram., 1969, vol. 8, pp. 804–08.

    Article  Google Scholar 

  9. G.V. Samsonov and V.l. Yakovlev:Sov. Powder Metall. Met. Ceram., 1970, vol. 9, pp. 30–36.

    Article  Google Scholar 

  10. G.V. Samsonov, I.F. Pryadko, and L.F. Pryadko:A Configurational Model of Matter, Consultants Bureau, New York, NY, 1973.

    Google Scholar 

  11. G.V. Samsonov and V.I. Yakovlev:Sci. Sintering, 1975, vol. 7, pp. 231–40.

    CAS  Google Scholar 

  12. Z.A. Munir and R.M. German:High Temp. Sci., 1977, vol. 9, pp. 275–83.

    CAS  Google Scholar 

  13. R.M. German:Sci. Sintering, 1983, vol. 15, pp. 27–42.

    Google Scholar 

  14. S. Farooq: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1988.

    Google Scholar 

  15. R.L. Coble:J. Am. Ceramic Soc., 1958, vol. 41, pp. 55–62.

    Article  CAS  Google Scholar 

  16. W.D. Kingery and M. Berg:J. Appl. Phys., 1955, vol. 26, pp. 1205- 12.

    Article  CAS  Google Scholar 

  17. G.C. Kuczynski:Trans. AIME, 1949, vol. 185, pp. 169–78.

    Google Scholar 

  18. D.L. Johnson and T.M. Clark:Acta Metall, 1964, vol. 12, pp. 1173- 79.

    Article  CAS  Google Scholar 

  19. R.L. Coble:J. Appl. Phys., 1961, vol. 32, pp. 787–92.

    Article  CAS  Google Scholar 

  20. W. Beere:Met. Sci., 1976, vol. 10, pp. 294–96.

    Article  CAS  Google Scholar 

  21. R.M. German:Metall. Trans. A, 1987, vol. 18A, pp. 909–14.

    CAS  Google Scholar 

  22. E. Artz:Acta Metall, 1982, vol. 30, pp. 1883–90.

    Article  Google Scholar 

  23. R.T. DeHoff: inMicrostructural Sdence, J.D. Braun, H.W. Arrowsmith, and J.L. McCall, eds., Elsevier, New York, NY, 1977, vol. 5, pp. 331–48.

    Google Scholar 

  24. H. Riedel and J. Svoboda:Acta Metall. Mater., 1993, vol 41 (6), pp. 1929–36.

    Google Scholar 

  25. A. Belhadjhamida and R.M. German: inTungsten and Tungsten Alloys, A. Crowson and E.S. Chen, eds., TMS, Warrendale, PA, 1991, pp. 3–19.

    Google Scholar 

  26. H. Jones:Met. Sci. J., 1971, vol. 5, pp. 15–18.

    Article  CAS  Google Scholar 

  27. R.M. German:Powder Metallurgy Science, MPIF, Princeton, NJ, 1994.

    Google Scholar 

  28. J.L. Johnson: Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1994.

    Google Scholar 

  29. Binary Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1986.

    Google Scholar 

  30. I.H. Moon, S.T. Oh, and Y.L. Kim:J. Less-Common Met, 1989, vol. 153 pp. 275–83.

    Article  CAS  Google Scholar 

  31. P.E. Zovas and R.M. German:Metall. Trans. A, 1984, vol. 15A, pp. 1103–10.

    CAS  Google Scholar 

  32. C. Li and R.M. German:Int. J. Powder Metall. Powder Technol, 1984, vol. 20, pp. 149–62.

    CAS  Google Scholar 

  33. S. Farooq and R.M. German: inSintering '87, S. Somiya, M. Shimada, M. Yoshimura, and R. Watanabe, eds., Elsevier Applied Science, London, 1988, vol. 1, pp. 459–64.

    Google Scholar 

  34. J.L. Johnson and R.M. German:Metall. Trans. A, 1993, vol. 24A, pp. 2369–77.

    CAS  Google Scholar 

  35. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  36. C. Wagner:Z. Electrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Director of Materials Development, P/M Lab, Department of Engineering Science and Mechanics, The Pennsylvania State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J.L., German, R.M. Theoretical modeling of densification during activated solid-state sintering. Metall Mater Trans A 27, 441–450 (1996). https://doi.org/10.1007/BF02648421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648421

Keywords

Navigation