Skip to main content
Log in

Low-power phase change memory with multilayer TiN/W nanostructure electrode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, multilayer TiN/W with interfacial nanostructure is used as electrode for application in low-power phase change memory (PCM). Compared with single-layer electrode, multilayer electrode has much lower thermal conductive due to the interfacial scattering effect. PCM based on multilayer electrode with different thickness ratio of TiN and W was fabricated and characterized. The device properties including operation voltage and endurance depended critically on the multilayer structure rather than the thickness ratio of TiN and W. The low operation voltage and long cycle life of multilayer-electrode-based PCM result from the increase in overall thermal resistance due to the low thermal conductivity of multilayer electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)

    Article  ADS  Google Scholar 

  2. F. Pan, C. Chen, Z.-S. Wang, Y.-C. Yang, J. Yang, F. Zeng, Progr. Nat. Sci. Mater. Int. 20, 1 (2010)

    Article  Google Scholar 

  3. J. Junquera, P. Ghosez, Nature 422, 506 (2003)

    Article  ADS  Google Scholar 

  4. J.-M. Hu, Z. Li, L.-Q. Chen, C.-W. Nan, Nat. Commun. 2, 553 (2011)

    Article  ADS  Google Scholar 

  5. A.L. Lacaita, A. Redaelli, Microelectron. Eng. 109, 351 (2013)

    Article  Google Scholar 

  6. R. Jeyasingh, L. Jiale, M. A. Caldwell, D. Kuzum, and H. S. P. Wong, in Phase Change Memory: Scaling and applications. Custom Integrated Circuits Conference (CICC) (IEEE, San Jose, California, USA, 2012), p. 1

  7. R. Bez, S. Bossi, B. Gleixner, F. Pellizzer, A. Pirovano, G. Servalli, and M. Tosi, in Phase Change Memory development trends. Memory Workshop (IMW) (IEEE International, Seoul, Korea, 2010), p. 1

  8. Y. Sung-Min, L. Nam-Yeal, R. Sang-Ouk, C. Kyu-Jeong, Y.S. Park, L. Seung-Yun, Y. Byoung-Gon, K. Myung-Jin, C. Se-Young, M. Wuttig, IEEE Electron Device Lett. 27, 445 (2006)

    Article  ADS  Google Scholar 

  9. T.C. Chong, Appl. Phys. Lett. 88, 122114 (2006)

    Article  ADS  Google Scholar 

  10. Y. Hu, X. Feng, S. Li, T. Lai, S. Song, Z. Song, J. Zhai, Appl. Phys. Lett. 103, 152107 (2013)

    Article  ADS  Google Scholar 

  11. T.-Y. Lee, K.H.P. Kim, D.-S. Suh, C. Kim, Y.-S. Kang, D.G. Cahill, D. Lee, M.-H. Lee, M.-H. Kwon, K.-B. Kim, Y. Khang, Appl. Phys. Lett. 94, 243103 (2009)

    Article  ADS  Google Scholar 

  12. Y. H. Ha, J. H. Yi, H. Horii, J. H. Park, S. H. Joo, S. O. Park, U. I. Chung, and J. T. Moon, in An edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption. Symposium on VLSI Technology. Digest of Technical Papers. (IEEE, Kyoto, Japan, 2003), p. 175

  13. W. S. Chen, C. Lee, D. S. Chao, Y. C. Chen, F. Chen, C. W. Chen, R. Yen, M. J. Chen, W. H. Wang, T. C. Hsiao, J. T. Yeh, S. H. Chiou, M. Y. Liu, T. C. Wang, L. L. Chein, C. Huang, N. T. Shih, L. S. Tu, D. Huang, T. H. Yu, M. J. Kao, and M. Tsai, in A Novel Cross-Spacer Phase Change Memory with Ultra-Small Lithography Independent Contact Area. Electron Devices Meeting, IEDM (IEEE International, Washington, DC, 2007), p. 319

  14. M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee, M. Lamorey, G. W. Burr, E. Joseph, A. Schrott, J. B. Philipp, R. Cheek, T. D. Happ, S. H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnage, M. Yang, Y. C. Chen, R. Bergmann, H. L. Lung, and C. Lam, in Novel Lithography-Independent Pore Phase Change Memory. IEEE Symposium on VLSI Technology (IEEE, Kyoto, Japan, 2007), p. 100

  15. F. Xiong, M.-H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2012)

    Article  ADS  Google Scholar 

  16. W.I. Park, B.K. You, B.H. Mun, H.K. Seo, J.Y. Lee, S. Hosaka, Y. Yin, C.A. Ross, K.J. Lee, Y.S. Jung, ACS Nano 7, 2651 (2013)

    Article  Google Scholar 

  17. Y. Lu, S. Song, Z. Song, L. Wu, A. He, Y. Gong, F. Rao, B. Liu, Appl. Phys. Lett. 101, 113104 (2012)

    Article  ADS  Google Scholar 

  18. J. Y. Wu, M. Breitwisch, S. Kim, T. H. Hsu, R. Cheek, P. Y. Du, J. Li, E. K. Lai, Y. Zhu, T. Y. Wang, H. Y. Cheng, A. Schrott, E. A. Joseph, R. Dasaka, S. Raoux, M. H. Lee, H. L. Lung, and C. Lam, in A Low Power Phase Change Memory Using Thermally Confined TaN/TiN Bottom Electrode, 2011, p. 3.2.1

  19. D. Loke, L. Shi, W. Wang, R. Zhao, L.-T. Ng, K.-G. Lim, H. Yang, T.-C. Chong, Y.-C. Yeo, Appl. Phys. Lett. 97, 243508 (2010)

    Article  ADS  Google Scholar 

  20. K.F. Kao, C.M. Lee, M.J. Chen, M.J. Tsai, T.S. Chin, Adv. Mater. 21, 1695 (2009)

    Article  Google Scholar 

  21. Y. Lu, S. Song, Z. Song, W. Ren, Y. Cheng, B. Liu, Appl. Phys. Express 4, 094102 (2011)

    Article  ADS  Google Scholar 

  22. W. Lee, M. Siddik, S. Jung, J. Park, S. Kim, J. Shin, J. Lee, S. Park, M. Son, H. Hwang, IEEE Electron Device Lett. 32, 1573 (2011)

    Article  ADS  Google Scholar 

  23. K. Nitta, T. Nohira, R. Hagiwara, M. Majima, S. Inazawa, J. Appl. Electrochem. 40, 1443 (2010)

    Article  Google Scholar 

  24. G. Chen, Phys. Rev. B 57, 14958 (1998)

    Article  ADS  Google Scholar 

  25. X.Y. Yu, G. Chen, A. Verma, J.S. Smith, Appl. Phys. Lett. 67, 3554 (1995)

    Article  ADS  Google Scholar 

  26. G. Chen, M. Neagu, Appl. Phys. Lett. 71, 2761 (1997)

    Article  ADS  Google Scholar 

  27. U. Russo, D. Ielmini, A. Redaelli, A.L. Lacaita, IEEE Trans. Electron Devices 55, 506 (2008)

    Article  ADS  Google Scholar 

  28. H. Zhu, J. Yin, Y. Xia, Z. Liu, Appl. Phys. Lett. 97, 083504 (2010)

    Article  ADS  Google Scholar 

  29. C. Kim, D. Kang, T.-Y. Lee, K.H.P. Kim, Y.-S. Kang, J. Lee, S.-W. Nam, K.-B. Kim, Y. Khang, Appl. Phys. Lett. 94, 193504 (2009)

    Article  ADS  Google Scholar 

  30. L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, J. Appl. Phys. 97, 083520 (2005)

    Article  ADS  Google Scholar 

  31. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, in Scaling Analysis of Phase-Change Memory Technology, 2003 (Electron Devices Meeting, 2003), p. 699

Download references

Acknowledgments

This work is supported by National Science Foundation of China (Grant Nos. 61306147, 61377061) and sponsored by K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Song, S., Shen, X. et al. Low-power phase change memory with multilayer TiN/W nanostructure electrode. Appl. Phys. A 117, 1933–1940 (2014). https://doi.org/10.1007/s00339-014-8660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8660-4

Keywords

Navigation