Skip to main content
Log in

Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that “MgAl2O4(spinel)+CaS” complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the “Refractory-Slag-Metal-Inclusions (ReSMI)” multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy–electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

  2. JEOL is a trademark of Japan Electron Optics. Ltd., Tokyo.

  3. FACTSAGE is a trade mark of CRCT-ThermFact Inc., Montreal, Canada & GTT-Technologies, Herzogenrath, Germany.

References

  1. T. Araki and S. Yamamoto: Iron and Steel, 1971, vol. 57, pp. 1912–32.

    Article  Google Scholar 

  2. A Kirsch-Racine, A Bomont-Arzur, M Confente (2007) Rev. Metall. 104(2):591–97.

    Article  Google Scholar 

  3. C. Gatellier, H. Gaye, J. Lehmann, J.N. Pontoire, and F. Castro: Proc. Steelmaking Conf., ISS-AIME, Warrendale, PA, 1991, pp. 827–34.

  4. L.E.K. Holappa and A.S. Helle: J. Mater. Process. Technol., 1995, vol. 53, pp. 177–86.

    Article  Google Scholar 

  5. R.V. Väinölä, L.E.K. Holappa, and P.H.J. Karvonen: J. Mater. Process. Technol., 1995, vol. 53, pp. 453–65.

    Article  Google Scholar 

  6. B. Korousic, F. Tehovnik, and B. Arh: Steel Res., 2001, vol. 72, pp. 35–39.

    Article  Google Scholar 

  7. L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    Article  Google Scholar 

  8. J.C. Pires and A. Garcia: R. Esc. Minas, 2004, vol. 57, pp. 183–89.

    Article  Google Scholar 

  9. S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.

    Article  Google Scholar 

  10. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711–19.

    Article  Google Scholar 

  11. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.

    Article  Google Scholar 

  12. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  13. A.K.J. Venkatesan and P.G. Venkatakrishnan: Adv. Mater. Res., 2012, vol. 585, pp. 364–68.

    Article  Google Scholar 

  14. F. Jiang, G. Cheng, G. Qian, Y. Xie, Q. Rui, and L. Yang: Steel Res. Int., 2013 vol. 84, pp. 554–59.

    Article  Google Scholar 

  15. L. Krajnc, P. Mrvar, and J. Medved: Mater. Technol., 2014, vol. 48, pp. 923–29.

    Google Scholar 

  16. M. Jiang, X.H. Wang, D. Yang, S.L. Lei, and K.P. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2573–83.

    Article  Google Scholar 

  17. G. Xu, Z. Jiang, and Y. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2411–20.

    Article  Google Scholar 

  18. Y.T. Guo, S.P. He, G.J. Chen, and Q. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2549–57.

    Article  Google Scholar 

  19. D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ. Int., 2015, vol. 55, pp. 2115–24.

    Article  Google Scholar 

  20. J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 46–59.

    Article  Google Scholar 

  21. H. Todoroki and K. Mizno: ISIJ Int., 2004, vol. 44, pp. 1350–57.

    Article  Google Scholar 

  22. J.H. Park and D.S. Kim: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 495–502.

    Article  Google Scholar 

  23. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  Google Scholar 

  24. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791–97.

    Article  Google Scholar 

  25. J.H. Park: CALPHAD, 2007, vol. 31, pp. 428–37.

    Article  Google Scholar 

  26. J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657–63.

    Article  Google Scholar 

  27. J.H. Park: Mater. Sci. Eng. A, 2007, vol. 472, pp. 43–51.

    Article  Google Scholar 

  28. M. Jiang, X.H. Wang, and W.J. Wang: Steel Res. Int., 2010, vol. 81, pp. 759–65.

    Article  Google Scholar 

  29. J.H. Shin and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2820–25.

    Article  Google Scholar 

  30. G.J.W. Kor: Elliott Symp., ISS-AIME, Warrendale, PA, 1990, pp. 40–17.

  31. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  32. www.factsage.com (accessed May 2017).

  33. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  Google Scholar 

  34. A. Ito, H. Suito, and R. Inoue: ISIJ Int., 2012, vol. 52, pp. 1196–1205.

    Article  Google Scholar 

  35. J.H. Park: CALPHAD, 2011, vol. 35, pp. 455–62.

    Article  Google Scholar 

  36. JC Villafuerte, HW Kerr, SA David (1995) Mater. Sci. Eng. A 194: 187–91.

    Article  Google Scholar 

  37. S. Ohkita and Y. Horii: ISIJ Int., 1995, vol. 35, pp. 1170–82.

    Article  Google Scholar 

  38. J.S. Park, C.H. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550–64.

    Article  Google Scholar 

  39. J.S. Park, D.H. Kim, and J.H. Park: J. Alloys Compd., 2017, vol. 695, pp. 476–81.

    Article  Google Scholar 

  40. H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa: Tetsu-to-Hagané, 2001, vol. 87, pp. 29–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted June 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J.H., Park, J.H. Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts. Metall Mater Trans B 49, 311–324 (2018). https://doi.org/10.1007/s11663-017-1152-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1152-0

Keywords

Navigation