Skip to main content
Log in

Precious Metal Distributions in Direct Nickel Matte Smelting with Low-Cu Mattes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Base metal (Cu, Fe, and Ni) and trace element (Ag, Au, Co, Pd, and Pt) distributions between low-iron nickel mattes with [Ni]:[Cu] = 4 (w/w) have been studied at 1623 K to 1723 K (1350 °C to 1450 °C). We equilibrated small slag–matte samples with CO–CO2–SO2–Ar atmospheres in pre-selected \( P_{{{\text{S}}_{2} }} \)\( P_{{{\text{O}}_{2} }} \) points, maintaining silica saturation by fused silica crucibles. The slags studied contained about 0 to 8.5 wt pct MgO. The matte–slag distribution coefficients L m/s[Me] were obtained from assays by electron probe X-ray microanalysis for the matte and by laser ablation-ICP-mass spectrometry for the slag. The measured L m/s[Me] values were clearly dependent on iron concentration of the matte and on MgO concentration of the slag, with values on the order of 104, 105, and 104 for gold, platinum, and palladium, respectively, in the 5 wt pct iron in matte experiments. The obtained data for silver were scattered, due to volatilization, resulting in depletion of most silver and its escape from matte to gas phase during the 3-hour equilibration period. The matte-to-slag distribution coefficient for silver was estimated to be L m/s[Ag] = 100 to 400. We also measured the distributions of the base metals Cu and Ni in the same conditions as the trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. 1. A. E. M. Warner, C. M. Diaz, A. D. Dalvi, P. J. Mackey and A. V. Tarasov: JOM, 2006, vol. 58 (4), pp. 11-20.

    Article  Google Scholar 

  2. 2. A. E. M. Warner, C. M. Diaz, A. D. Dalvi, P. J. Mackey, A. V. Tarasov and R. T Jones: JOM, 2007, vol. 59 (4), pp. 58-72.

    Article  Google Scholar 

  3. T. Mäkinen and T. Ahokainen: in Pyrometallurgy of Nickel and Cobalt 2009, J. Liu et al., eds., CIM, Montreal, 2009, pp. 209–220.

  4. I.V. Kojo, T. Mäkinen and P. Hanniala: Proceedings of NickelCobalt ’97, vol. III, C. Diaz et al., eds., CIM, Montreal, 1997, pp. 25–34.

  5. 5. L. Andrews and P.C. Pistorius: Trans. IMM. Sect. C, 2010, 119 (1), pp 52-59.

    Google Scholar 

  6. 6. D. Strengell, K. Avarmaa, H. Johto and P. Taskinen: Can. Metall. Q., 2016, vol. 55 (2), pp. 234-242.

    Article  Google Scholar 

  7. P. Taskinen, K. Seppälä, J. Laulumaa, and J. Poijärvi: Trans. IMM, Sect. C, 2001, vol. 110(2), pp. C101–108.

  8. M. Eerola and P. Taskinen: Nickel-Cobalt 97 International Symposium, vol. II, C.A. Levac and R.A. Berryman, eds., CIM, Montreal, 1997, pp. 283–97.

  9. I-H. Jung, S.A. Decterov and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35(5), pp. 877–89.

  10. 10. J. Font, M. Hino and K. Itagaki: Mater. Trans. JIM, 1998, vol. 39 (8), pp. 834-40.

    Article  Google Scholar 

  11. 11. J. Font, M. Hino and K. Itagaki: Mater. Trans. JIM, 1999, vol. 40 (1), pp. 20-26.

    Article  Google Scholar 

  12. 12. J. Font, M. Hino and K. Itagaki: Metall. Review MMIJ, 2001, vol. 17 (2), pp. 106-15.

    Google Scholar 

  13. 13. N. Choi and W. D. Cho: Metall. Mater. Trans. B, 1997, vol. 28 (3), pp. 429-38.

    Article  Google Scholar 

  14. N. Choi and W.D. Cho: Miner. Metall. Process., 1998, vol. 15(3), pp. 23–29.

  15. 15. J. Font, Y. Takeda and K. Itagaki: Mater. Trans. JIM, 1998, vol. 39 (6), pp. 652-57.

    Article  Google Scholar 

  16. 16. P. Tan and D. Neuschütz: Metall. Mater. Trans. B, 2001, vol. 32 (2), pp. 341-351.

    Article  Google Scholar 

  17. 17. R. H. Davies, A. T. Dinsdale, J. A. Gisby, J. A. J. Robinson and S. M. Martin: Calphad, 2002, vol. 26 (2), pp. 229-271.

    Article  Google Scholar 

  18. SGTE Database for Pure Substances, Scientific Group Thermodata Europe (http://www.sgte.org/).

  19. J.L. Pouchou and F. Pichoir: in 11th International Congress on X-ray Optics and Microanalysis (ICXOM), Ontario, Canada, J.D. Brown and R.H. Packwood, 1986, pp. 249–56.

  20. Yu. G. Lavrent’ev, V.N. Korolyuk and L.V. Usova: J. Anal. Chem., 2004, vol. 59(7), pp. 600–16.

  21. 21. K. Avarmaa, H. Johto and P. Taskinen: Metall. Mater. Trans. B, 2016, vol. 47 (1), pp. 244-255.

    Article  Google Scholar 

  22. 22. T. O. Ziebold: Anal. Chem., 1967, vol. 39 (8), pp. 858-861.

    Article  Google Scholar 

  23. 23. K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D.E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Günther and J. Enzweiler: Geostandards and geoanalytical research, 2011, vol. 35 (4), pp. 397-429.

    Article  Google Scholar 

  24. 24. H. St O’Neill and J.A. Mavrogenes: J. Petrol., 2002, vol. 43 (6), pp. 1049-87.

    Article  Google Scholar 

  25. X. Liu and E.J. Grimsey: in 6th AusIMM Extractive Metall. Conf., The Australas. IMM, Melbourne, Publication Series #4/94, 1994, pp. 247–52.

  26. C. Chen, L. Zhang, and S. Jahanshahi: in VII Int. Conf. on Molten Slags, Fluxes and Salts, SA IMM, Johannesburg, Symposium Series #36, 2004, pp. 509–15.

  27. R.S. Celmer and J.M. Toguri: Terkel Rosenqvist Symposium, S.E. Olsen and J. Kr. Tuset, Norwegian Institute of Technology, Trondheim, Norway, 1988, pp. 341–68.

  28. 25. K. Avarmaa, H. O’Brien, H. Johto and P. Taskinen: J. Sustain. Metall., 2015, vol. 1 (3), pp. 216-228.

    Article  Google Scholar 

  29. 29. H. Henao and K. Itagaki: Metall. Mater. Trans. B, 2004, vol. 35 (6), pp. 1041-49.

    Article  Google Scholar 

  30. 31. J. E. Mungall and J. M. Brenan: Geochim. Cosmochim. Acta, 2014, vol. 125 (1), pp. 265-289

    Article  Google Scholar 

  31. 32. A. Borisov and L. Danyushevsky: Eur. J. Mineral., 2011, vol. 23 (3), pp. 355-367.

    Article  Google Scholar 

  32. 35. Gisby J., Taskinen P., Pihlasalo J., Li Z., Tyrer M., Pearce J., Avarmaa K., Björklund P., Davies H., Korpi M., Martin S., Pesonen L. and Robinson J.: Metall. Mater. Trans. B, 2017, vol. 48 (1), pp. 91-98.

    Article  Google Scholar 

  33. 33. A. Borisov and H. Palme: Am. Mineral., 2000, vol. 85 (8), pp. 1665-1673.

    Article  Google Scholar 

  34. 34. K. L. Pruseth and H. Palme: Chem. Geol., 2004, vol. 208 (1-4), pp. 233-245.

    Article  Google Scholar 

  35. S.E. Jacson: Laser Ablation–ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylvester Ed.). Short Course Series #40; Mineral. Assoc. Canada, Quebec, 2008, pp. 169–88.

  36. 37. R. Sridhar, J. Toguri and S. Simeonov: Metall. Mater. Trans. B, 1997, vol. 28 (2), pp. 191-200.

    Article  Google Scholar 

  37. H. Henao, K. Yamaguchi and S. Ueda: Sohn International Symposium, vol. 1, F. Kongoli, R. Reddy, eds., TMS, Warrendale (PA), 2006, pp. 723–29.

Download references

Acknowledgments

We kindly acknowledge the generous financial support of Boliden Harjavalta. The EPMA measurements were carried out by Mr Lassi Pakkanen of the Geological Survey of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Taskinen.

Additional information

Manuscript submitted May 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskunen, P., Avarmaa, K., O’Brien, H. et al. Precious Metal Distributions in Direct Nickel Matte Smelting with Low-Cu Mattes. Metall Mater Trans B 49, 98–112 (2018). https://doi.org/10.1007/s11663-017-1115-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1115-5

Keywords

Navigation