Skip to main content
Log in

A thermodynamic model of nickel smelting and direct high-grade nickel matte smelting processes: Part I. Model development and validation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermodynamic model has been developed to predict the distribution behavior of Ni, Cu, Co, Fe, S, As, Sb, and Bi in the Outokumpu flash-smelting process, the Outokumpu direct high-grade matte smelting process, and the INCO flash-smelting process. In this model, as many as 16 elements (Ni, Cu, Co, Fe, As, Sb, Bi, S, O, Al, Ca, Mg, Si, N, C, and H) are considered, and two nickel sulfide species are used to allow for modeling of sulfur-deficient mattes. The compositions of the matte, slag, and gaseous phases in equilibrium are calculated using Gibbs free energies of formation and the activity coefficients of the components derived from the experimental data. The model predictions are compared with the known industrial data from the Kalgoorlie Nickel Smelter (Kalgoorlie, Australia), the Outokumpu Harjavalta Nickel Smelter (Harjavalta, Finland), the INCO Metals Company (Sudbury, Canada), and from a number of experimental data. An excellent agreement is obtained. It was found that the distribution behaviors of Ni, Co, Cu, Fe, S, As, Sb, and Bi in the nickel smelting furnace depend on process parameters such as the smelting temperature, matte grade, and partial pressure of oxygen in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A i,k :

number of the kth constituent element in the ith independent component

B j,k :

number of the kth constituent element in the jth dependent component

ΔG o t , ΔG o j :

the standard Gibbs energy of formation of the ith independent component and the jth dependent component, respectively

K j :

equilibrium constant for the formation reaction of the jth dependent component from the set of independent components

L s/mX :

distribution coefficient, L s/mX = [pct x]Sl/[pct x]Mt

D x :

fractional distribution of x

[M]:

weight percentage of M

Q k :

total molar amount of the kth element in the system

R:

gas constant

m(i), m(j) :

phase number to the ith independent component and the jth dependent component belong, respectively

N :

molar fraction

γ :

the activity coefficient

a :

the activity

p :

pressure

T :

smelting temperature

V j,i :

coefficients of independent reactions

X i , X j :

molar amount of the ith independent component and the jth dependent component, respectively

Z m :

total amount of the compounds in the mth phase

γ i , γ j :

Raoultion activity coefficient of the ith independent component and the jth dependent component, respectively

g :

gaseous phase

Mt :

Matte phase

Sl :

slag phase

°:

value in standard state

References

  1. A.R. Burkin: Extractive Metallurgy of Nickel, Society of Chemical Industry, John Wiley & Sons, Great Britain, 1987, p. 9.

    Google Scholar 

  2. T. Mäkinen: Espoo, Finland U.S. Patent 5332414, July 26, 1994.

  3. T. Mäkinen and P. Taskinen: in Sulfide Smelting’ 98: Current and Future Practices, J.A. Asteljoki and R.L. Stephens, eds., TMS, Warrendale, PA, 1998, pp. 59–68.

    Google Scholar 

  4. M. Nagamori and P.J. Mackey: Metall. Trans. B, 1978, vol. 9B, pp. 255–65.

    CAS  Google Scholar 

  5. M. Nagamori and P.C. Chaubal: Metall. Trans. B, 1982, vol. 13B, pp. 319–29 and 331–38.

    CAS  Google Scholar 

  6. P.C. Chaubal, H.Y. Sohn, D.B. George, and L.K. Bailey: Metall. Trans. B, 1989, vol. 20B, pp. 39–51.

    CAS  Google Scholar 

  7. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, pp. 945–58 and 959–66.

    CAS  Google Scholar 

  8. K.W. Seo and H.Y. Sohn: Metall. Trans. B, 1991, vol. 22B, pp. 791–99.

    CAS  Google Scholar 

  9. M. Nagamori, W.J. Errington, P.J. Mackey, and D. Poggi: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 839–853.

    CAS  Google Scholar 

  10. H.G. Kim and H.Y. Sohn: Can. Metall. Q., 1997, vol. 36, pp. 31–37.

    Article  CAS  Google Scholar 

  11. H.G. Kim and H.Y. Sohn: Trans. Inst. Min. Metall. Sec. C, 1998, vol. 107, pp. C43-C59.

    CAS  Google Scholar 

  12. S.A. Degterov and A.D. Pelton: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 661–69.

    Article  CAS  Google Scholar 

  13. Pengfu Tan and Chuanfu Zhang: Scand. J. Metall., 1997, vol. 26 (3), pp. 115–22.

    CAS  Google Scholar 

  14. Pengfu Tan and Chuanfu Zhang: EPD Congress 1998, B. Mishra, ed., TMS, San Antonio, TX, 1998, pp. 815–20.

    Google Scholar 

  15. R. Shimpo, Y. Watanabe, S. Goto, and O. Ogawa: in Advances in Sulfide Smelting, H.Y. Sohn, ed., TMS-AIME, San Francisco, CA, 1983, pp. 295–316.

    Google Scholar 

  16. R. Shimpo, O. Ogawa, and S. Goto: Metall. Trans. A, 1993, vol. 24A, pp. 1882–89.

    CAS  Google Scholar 

  17. S.L. Lee: Ph.D. Thesis, Columbia University, New York, NY, 1975.

    Google Scholar 

  18. Y.Y. Chuang: Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 1983.

    Google Scholar 

  19. A.T. Dinsdale: Ph.D. Thesis, Brunel University, Middlesex, United Kingdom, 1984.

    Google Scholar 

  20. K. Yoshiki-Gravelsins: Ph.D. Thesis, University of Toronto, Toronto, 1988.

    Google Scholar 

  21. F. Kongoli, Y. Dessureault, and A.D. Pelton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 591–601.

    Article  CAS  Google Scholar 

  22. F. Kongoli and A.D. Pelton: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 443–50.

    Article  CAS  Google Scholar 

  23. H.H. Kellogg: Can. Metall. Q., 1987, vol. 26 (4), pp. 285–98.

    CAS  MathSciNet  Google Scholar 

  24. A.K. Kyllo and G.G. Richards: Metall. Trans. B, 1991, vol. 22B, pp. 153–61.

    CAS  Google Scholar 

  25. A.K. Kyllo, G.G. Richards, and S.W. Marcuson: Metall. Trans. B, 1992, vol. 23B, pp. 573–82.

    CAS  Google Scholar 

  26. Pengfu Tan and Chuanfu Zhang: Proc. Int. Symp. Metallurgy and Materials of Non-Ferrous Metals and Alloys, He Jicheng, ed., Northeastern University Press, Shengyang, China, 1996, pp. 297–302.

    Google Scholar 

  27. Pengfu Tan and Chuanfu Zhang: in Processing of Metals & Advanced Materials—Modeling, Design, and Properties, Ben Q. Li, ed., TMS, San Antonio, TX, 1998, pp. 101–08.

    Google Scholar 

  28. F. Kongoli and A.D. Pelton: Proc. Nickel-Cobalt 97 Int. Symp.—Volume II, Pryometallurgy Fundamentals and Process Development, C.A. Levac and R.A. Berryman, eds., CIM, Sudbury, ON, Canada, 1997, pp. 267–81.

    Google Scholar 

  29. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 539–48.

    CAS  Google Scholar 

  30. J.R. Taylor and J.H.E. Jeffes: Trans. Inst. Min. Metall., 1975, vol. 21C, pp. C316-C148.

    Google Scholar 

  31. R.G. Reddy and C.C. Acholonu: Metall. Trans. B, 1984, vol. 15B, pp. 33–37.

    CAS  Google Scholar 

  32. S.S. Wang, A.J. Kurtis, and J.M. Toguri: Can. Metall. Q., 1973, vol. 12 (4), pp. 383–90.

    CAS  Google Scholar 

  33. E.J. Grimsey and A.K. Biswas: Trans. Inst. Min. Metall., 1977, vol. 23C, pp. C1-C8.

    Google Scholar 

  34. R.W. Shaw and G.M. Willis: Can. Metall. Q., 1981, vol. 20, pp. 153–61.

    CAS  Google Scholar 

  35. S.S. Wang, N.H. Santander, and J.M. Toguri: Metall. Trans., 1974, vol. 5, pp. 261–65.

    CAS  Google Scholar 

  36. E.J. Grimsey and A.K. Biswas: Trans. Inst. Min. Metall., 1976, vol. 22C, pp. C200-C207.

    Google Scholar 

  37. M. Nagamori and P.J. Mackey: Can. Metall. Q., 1977 Annual Volume, CIM, Montreal, 1978, pp. 232–36.

    Google Scholar 

  38. E.J. Grimsey and J.M. Toguri: Can. Metall. Q., 1988, vol. 27 (4), pp. 331–33.

    CAS  Google Scholar 

  39. E.J. Grimsey and Xuliang Liu: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 229–34.

    CAS  Google Scholar 

  40. G.J. O’Connell and J.M. Toguri: Can. Metall. Q., 1996, vol. 35 (5), pp. 419–26.

    CAS  Google Scholar 

  41. D.C. Lynch and X. Zhong: Proc. Nickel-Cobalt 97 Int. Symp.—Volume II, Pyrometallurgy Fundamentals and Process Development, C.A. Levac and R.A. Berryman, eds., CIM, Sudbury, ON, Canada, 1997, pp. 313–21.

    Google Scholar 

  42. Y. Fujita, R.U. Pagador, M. Hino, and T. Azakami: J. Jpn. Inst. Met., 1997, vol. 61 (7), pp. 619–24.

    CAS  Google Scholar 

  43. S.R. Simeonov, R. Sridhar, and J.M. Toguri: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 325–34.

    CAS  Google Scholar 

  44. R.S. Celmer and J.M. Toguri: in Extractive Metallurgy of Nickel and Cobalt, G.P. Tyroler and C.A. Landolt, eds., TMS, Warrendale, PA, 1998, pp. 307–23.

    Google Scholar 

  45. S. Simeonov, R. Sridhar, and J.M. Toguri: Proc. Nickel-Cobalt 97 Int. Symp.—Volume II, Pyrometallurgy Fundamentals and Process Development, C.A. Levac and R.A. Berryman, eds., CIM, Sudbury, ON, Canada, 1997, pp. 15–22.

    Google Scholar 

  46. N. Choi and W.D. Cho: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 429–38.

    Article  CAS  Google Scholar 

  47. Y. Takeda, S. Kanesaka, and A. Yazawa: in Nickel Metallurgy, E. Ozberg and S.W. Maecuson, eds., CIM Montreal, 1986, vol. I, pp. 186–202.

  48. Y. Takeda, S. Kanesaka, M. Hino, and A. Yazawa: J. Inst. Min. Metall., 1995, pp. 285–94.

  49. R.U. Pagador and M. Hino: Metall. Rev. MMIJ, 1996, vol. 13 (1), pp. 166–85.

    CAS  Google Scholar 

  50. R.U. Pagador, M. Hino, and K. Itagaki: Metall. Rev. MMIJ, 1996, vol. 13 (2), pp. 90–103.

    CAS  Google Scholar 

  51. R.U. Pagador, M. Hino, and K. Itagaki: Proc. Nickel-Cobalt 97 Int. Symp.—Volume II, Pyrometallurgy Fundamentals and Process Development, C.A. Levac and R.A. Berryman, eds, CIM, Sudbury, ON, Canada, 1997, pp. 63–75.

    Google Scholar 

  52. R.U. Pagador, M. Hino, and K. Itagaki: Shigen-to-Sozai, 1998, vol. 114 (2), p. 127–32.

    Article  CAS  Google Scholar 

  53. R.U. Pagador, M. Hino, and K. Itagaki: Mater. Trans. JIM, 1999, vol. 40 (3), pp. 225–32.

    CAS  Google Scholar 

  54. J.M. Font, Y. Takeda, and K. Itagaki: Mater. Trans. JIM, 1998, vol. 38, pp. 652–62.

    Google Scholar 

  55. J.M. Font, M. Hino, and K. Itagaki: Mater. Trans. JIM, 1998, vol. 39 (8), pp. 834–40.

    CAS  Google Scholar 

  56. J.M. Font, G. Roghani, M. Hino, and K. Itagaki: Metall. Rev. MMIJ, 1998, vol. 15 (1), pp. 75–86.

    CAS  Google Scholar 

  57. J.M. Font, M. Hino and K. Itagaki: Metall. Rev. MMIJ, 1998, vol. 15 (2), pp. 202–20.

    CAS  Google Scholar 

  58. J.M. Font, M. Hino, and K. Itagaki: Copper 99-Cobre 99, Vol. II—Smelting. Technology Development, Process Modeling and Fundamentals, C. Diaz, C. Landolt, and T. Utigard, eds., TMS, Warrendale, PA, 1999, pp. 523–37.

    Google Scholar 

  59. J.M. Font, M. Hino, and K. Itagaki: Shigen-to-Sozai, 1999, vol. 115 (6), pp. 460–66.

    Article  CAS  Google Scholar 

  60. J.M. Font, M. Hino, and K. Itagaki: Mater. Trans. JIM, 1999, vol. 40 (1), pp. 20–26.

    CAS  Google Scholar 

  61. Y. Itagaki: Metall. Rev. MMIJ, 1986, vol. 3, pp. 87–100.

    CAS  Google Scholar 

  62. N. Kemori: J. Min. Mater. Proc. Inst. Jpn., 1987, 103 (5), pp. 315–28.

    CAS  Google Scholar 

  63. B. Bjorkman and G. Eriksson: Can. Metall. Q., 1982, vol. 21 (4), pp. 329–37.

    Google Scholar 

  64. R.S. Celmer and T.M. Toguri: Proc. 25th Annual Conf. of Metallurgists, CIM, Halifax, NS, Canada, 1986, pp. 147–63.

    Google Scholar 

  65. J.J. Byerley and N. Takebe: Metall. Trans. B, 1972, vol. 3B, pp. 559–64.

    Google Scholar 

  66. N. Kemori, T. Kimura, Y. Mori, and S. Goto: in Pyrometallurgy 87, IMM, London, 1987, pp. 647–66.

    Google Scholar 

  67. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531–38.

    Google Scholar 

  68. A. Yazawa, S. Nakazawa, and Y. Takeda: in Advances in Sulfide Smelting, H.Y. Sohn, D.B. George, and A.D. Zunkel, eds., TMS-AIME, San Francisco, CA, 1983, vol. I, pp. 99–118.

    Google Scholar 

  69. S.N. Sinha and M. Nagamori: Metall. Trans. B, 1982, vol. 13B, pp. 461–70.

    CAS  Google Scholar 

  70. O. Knacke, O. Kubaschewski, and K. Hesselmann: in Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1991, p. 307.

    Google Scholar 

  71. P.J. Mackey: Can. Metall. Q., 1982, vol. 21, pp. 221–60.

    CAS  Google Scholar 

  72. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th ed., Pergamon Press, Elmsford, NJ, NI, 1979.

    Google Scholar 

  73. Y. Takeda, S. Ishiwata, and A. Yazawa: Trans. Jpn. Inst. Met., 1983, vol. 24, pp. 518–28.

    CAS  Google Scholar 

  74. A.V. Tarasov, V.A. Kaplan, V.A. Kukoev, N.Y. Gusel’nikova, and E.V. Meierovich: Tsv. Metall., 1987, vol. 28 (12), pp. 23–25.

    Google Scholar 

  75. M.Y. Solar, R.J. Neal, T.N. Antonioni, and M.C. Bell: J. Met., 1979, vol. 31 (1), pp. 26–32.

    CAS  Google Scholar 

  76. Danyun Zhou: Nonferrous Metals (Extractive Metallurgy), 1984, No. 2, pp. 4–8 (in Chinese).

  77. T. Mäkinen: Outokumpu Engineering Contractors Oy, Espoo, Finland, private communication, 1999.

  78. N. Nagamori and P.J. Mackey: Metall. Trans. B, 1978, vol. 9B, pp. 567–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, P., Neuschütz, D. A thermodynamic model of nickel smelting and direct high-grade nickel matte smelting processes: Part I. Model development and validation. Metall Mater Trans B 32, 341–351 (2001). https://doi.org/10.1007/s11663-001-0057-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0057-z

Keywords

Navigation