Skip to main content
Log in

Optimization of Lead and Silver Extraction from Zinc Plant Residues in the Presence of Calcium Hypochlorite Using Statistical Design of Experiments

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, a chloride/hypochlorite leaching process was performed for zinc plant residues. Sodium chloride and calcium hypochlorite were used as leaching and oxidizing agents, respectively. Fractional factorial method has been used to test main effects, and interactions among factors were investigated. The statistical software named Design-Expert 7 has been utilized to design experiments and subsequent analysis. Parameters and their levels were reaction time (t = 16 and 120 minutes), reaction temperature [T = 303 K and 343 K (30 °C and 70 °C)], solid-to-liquid ratio (S/L = 1/6 and 1/38), pH (pH = 0.5 and 2), and Ca(OCl)2 concentration (C = 0.6 and 3 g/L). Analysis of variance was also employed to determine the relationship between experimental conditions and yield levels. Results showed that reaction temperature and pH were significant parameters for both lead and silver extractions but solid-to-liquid ratio had significant effect only on lead extraction. Increasing pH reduced leaching efficiency of lead and silver. However, increasing reaction temperature promoted the extraction of lead and silver. Ultimate optimum conditions from this study were t 1: 16 min, T 2: 343 K (70 °C), (S/L)2: 1/38, pH1: 0.5, and C 1: 0.6 g/L. Under these conditions, extractions of lead and silver were 93.60 and 49.21 pct, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Raghavan, P.K. Mohanan, and S.C. Patnaik: Hydrometallurgy, 1998, vol. 48, pp. 225-237.

    Article  Google Scholar 

  2. R. Raghavan, P.K. Mohanan, and S.R. Swarnkar: Hydrometallurgy, 2000, vol. 58, pp. 103-116.

    Article  Google Scholar 

  3. K.L. Bhat, K.A. Natarajan, and T. Ramachandran: Hydrometallurgy, 1987, vol. 18, pp. 287-303.

    Article  Google Scholar 

  4. F. Habashi: Handbook of Extractive Metallurgy, Vol. 2, Wiley-VCH, Toronto, 1997.

    Google Scholar 

  5. M.R.C. Ismael and J.M.R. Carvalho: Miner. Eng., 2003, vol. 16, pp. 31-39.

    Article  Google Scholar 

  6. V. Singh: Hydrometallurgy, 1996, vol. 40, pp. 247-262.

    Article  Google Scholar 

  7. P. Asokan, M. Saxena, and S.R. Asolekar: Sci. Total Environ., 2006, vol. 359, pp. 232-243.

    Article  Google Scholar 

  8. P. Asokan, M. Saxena, and S.R. Asolekar: J. Hazard. Mater., 2006, vol. B137, pp. 1589-1599.

    Article  Google Scholar 

  9. A. Özverdİ and M. Erdem: Hydrometallurgy, 2010, vol. 100, pp. 103-109.

    Article  Google Scholar 

  10. M. Romero: J.Ma. Rincon, Mater. Lett., 1997, vol. 31, pp. 67-73.

    Article  Google Scholar 

  11. F. Farahmand, D. Moradkhani, M.S. Safarzadeh, and F. Rashchi: Hydrometallurgy, 2009, vol. 95, pp. 316-324.

    Article  Google Scholar 

  12. D. Andrews, A. Raychaudhuri, and C. Frias: J. Power Sources, 2000, vol. 88, pp. 124-129.

    Article  Google Scholar 

  13. M.X. Liao and T.L. Deng: Miner. Eng., 2004, vol. 17, pp. 17-22.

    Article  Google Scholar 

  14. A. Ruşen, A.S. Sunkar, and Y.A. Topkaya: Hydrometallurgy, 2008, vol. 93, pp. 45-50.

    Article  Google Scholar 

  15. M.D. Turan, H.S. Altundoğan, and F. Tümen: Hydrometallurgy, 2004, vol. 75, pp. 169-176.

    Article  Google Scholar 

  16. D. Sinadinovic, Z. Kamberovic, and A. Sutic: Hydrometallurgy, 1997, vol. 47, pp. 137-147.

    Article  Google Scholar 

  17. N. Leclerc, E. Meux, and J-M. Lecuire: Hydrometallurgy, 2003, vol. 70, pp. 175-183.

    Article  Google Scholar 

  18. B. Behnajady and J. Moghaddam: Re. J. Chem. Environ., 2011, vol. 15, pp. 473-480.

    Google Scholar 

  19. J. Vinals, C. Nunez, and O. Herreros: Hydrometallurgy, 1994, vol. 38, 125-147.

    Article  Google Scholar 

  20. M. Baghalha: Int. J. Miner. Process., 2007, vol. 82, pp. 178-186.

    Article  Google Scholar 

  21. I. Marsden and I. House: Chemistry of Gold Extraction, Hollingsworth, London, 1992.

    Google Scholar 

  22. S.R. La Brooy, H.G. Linge, and G. S. Walker: Miner. Eng., 1994, vol. 7, pp. 1213-1241.

    Article  Google Scholar 

  23. K.S. Nam, B.H. Jung, J.W. An, T.J. Ha, T. Tran, and M.J. Kim: Int. J. Miner. Process., 2008, vol. 86, pp. 131-140.

    Article  Google Scholar 

  24. J.E. Dutrizac: Hydrometallurgy, 2002, vol. 65, pp. 109-135.

    Article  Google Scholar 

  25. B. Rahmanian, S.A.A. Mansoori, R. Abedini, and M. Pakizeh: J. Hazard. Mater., 2011, vol. 187, pp. 67-74.

    Article  Google Scholar 

  26. F. Veglio and L. Toro: Hydrometallurgy, 1993, vol. 36, pp. 215-230.

    Article  Google Scholar 

  27. D.C. Montgomery: Design and Analysis of Experiments, John Wiley & Sons, New York, 2001.

    Google Scholar 

  28. C.K. Gupta and T.K. Mukherjee: Hydrometallurgy in Extraction Processes, vol. 1. CRC Press: Boca Raton, Florida, 1990.

    Google Scholar 

  29. F. Habashi: Principles of Extractive Metallurgy; vol. 2. Gordon and Breach: New York, 1969.

    Google Scholar 

  30. R.G. Holdich and G.J. Lawson: Hydrometallurgy, 1987, vol. 19, pp. 199–208.

    Article  Google Scholar 

  31. K.G. Tan, K. Barrels, and P.L. Bedard: Hydrometallurgy, 1987, vol. 17, pp. 335–356.

    Article  Google Scholar 

  32. R. Winand: Hydrometallurgy, 1991, vol. 27, pp. 285–316.

    Article  Google Scholar 

  33. O. Dinardo and J.E. Dutrizac: Hydrometallurgy, 1985, vol. 13, pp. 345–363.

    Article  Google Scholar 

  34. J.E. Dutrizac, R.J.C. MacDonald, and R.E. Lamarche: J. Chem. Eng. Data, 1975, vol. 20 (1), pp. 55–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Additional information

Manuscript submitted September 2, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnajady, B., Moghaddam, J. Optimization of Lead and Silver Extraction from Zinc Plant Residues in the Presence of Calcium Hypochlorite Using Statistical Design of Experiments. Metall Mater Trans B 45, 2018–2026 (2014). https://doi.org/10.1007/s11663-014-0130-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0130-z

Keywords

Navigation