Skip to main content
Log in

Microstructure and Tribological Performance of Laser Cladding Ti2AlC Particle Reinforced Coatings on Ti6Al4V

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

By applying the TC4-Ti2AlC composite coatings to the Ti6Al4V substrate by laser, the wear resistance of the Ti6Al4V alloy was improved. Analysis was done on the composite coatings' microstructure, phase composition, microhardness, and tribological characteristics. According to the findings, coatings without defects can be created when Ti2AlC content ranges between 5 and 15 wt.%. Furthermore, the coating without Ti2AlC consisted of a α-Ti solid solution while coatings with Ti2AlC included a α-Ti solid solution, hard phases of TiC and Ti3Al, as well as a Ti2AlC ceramic phase. During laser cladding, Ti2AlC partially dissolved and turned into TiC and Ti3Al, resulting in an average hardness of 371.61 ± 3.95 HV0.5, 382.92 ± 3.61 HV0.5, 388.91 ± 3.29 HV0.5 for the coatings with Ti2AlC weight fractions of 5, 10, and 15%, respectively. These numbers were about 1.16 ~ 1.22 times the hardness of the titanium alloy matrix (320 ± 3.12 HV0.5). Besides, the Ti2AlC lubricant and hard phases act synergistically to bring composite coatings better performances in wear resistance and friction reduction compared to the pure TC4 coating. The lowest coefficient of friction (0.382) (COF) and the greatest wear resistance (8.87 × 10−5 mm3/N m) were obtained at the composition of TC4-10wt.%Ti2AlC; more particularly, the wear resistance at TC4-10wt.%Ti2AlC was 1.2–2.1 times that of pure TC4 coating. The principal causes of wear in a pure TC4 coating are adhesive wear and oxidation, however, these wear processes shift to minor abrasive wear and oxidation when assisted by oxide coatings, Ti2AlC lubricant, and TiC, Ti3Al hard phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R.C. Fernandez, T. Tobie and J. Collazo, Increase wind Gearbox Power Density by Means of IGS (Improved Gear Surface), Int. J. Fatigue, 2022, 159, p 106789. https://doi.org/10.1016/j.ijfatigue.2022.106789

    Article  Google Scholar 

  2. T.M. Chen, C.C. Zhu, H.J. Liu, P.T. Wei, J.Z. Zhu and Y.Q. Xu, Simulation and Experiment of Carburized Gear Scuffing Under Oil Jet Lubrication, Eng. Fail. Anal., 2022 https://doi.org/10.1016/j.engfailanal.2022.106406

    Article  Google Scholar 

  3. A. Suresh, K.V.V. Sai Kalyan, K.S. Sibin Kumar, K. Vinod Kumar, V. Tanishka Varma and B. Sravan Kumar, Design and Simulation of Gear Box for Stone Crushing Ball Mill, Mater. Today Proc., 2022 https://doi.org/10.1016/j.matpr.2022.04.456

    Article  Google Scholar 

  4. L. Shi, X.F. Cui, J. Li, G. Jin, J.N. Liu and H.L. Tian, Improving the Wear Resistance of Heavy-Duty Gear Steels by Cyclic Carburizing, Tribol. Int., 2022, 171, p 107576. https://doi.org/10.1016/j.triboint.2022.107576

    Article  CAS  Google Scholar 

  5. R.L. Dalcin, V.M.D. Menezes, L.F. Oliveira, C.H.D. Silva, J.C.K.D. Neves, C.A.T.S. Diehl and A.D.S. Rocha, Improvement on Pitting Wear Resistance of Gears by Controlled Forging and Plasma Nitriding, J. Market. Res., 2022, 18, p 4698–4713. https://doi.org/10.1016/j.jmrt.2022.04.122

    Article  CAS  Google Scholar 

  6. V. Kharka, N.K. Jain and K. Gupta, Sustainability and Performance Assessment of Gear Hobbing Under Different Lubrication Environments for Manufacturing of 20MnCr5 Spur Gears, Sustain. Mater. Technol., 2022, 31, e00388. https://doi.org/10.1016/j.susmat.2022.e00388

    Article  CAS  Google Scholar 

  7. Z.Y. Zhou, X.B. Liu, S.G. Zhuang, X.H. Yang, M. Wang and C.F. Sun, Preparation and High Temperature Tribological Properties of Laser In-Situ Synthesized self-Lubricating Composite Coatings Containing Metal Sulfides on Ti6Al4V alloy, Appl. Surf. Sci., 2019, 481, p 209–218. https://doi.org/10.1016/j.apsusc.2019.03.092

    Article  CAS  Google Scholar 

  8. Y.Q. Zhao, Y. Han and Y. Xiao, An Asynchronous Dual-Frequency Induction Heating Process for Bevel Gears, Appl. Therm. Eng., 2020, 169, p 114981. https://doi.org/10.1016/j.applthermaleng.2020.114981

    Article  Google Scholar 

  9. J.W. Zhang, W. Li, H.Q. Wang, Q.P. Song, L.T. Lu, W.J. Wang and Z.W. Liu, A Comparison of the Effects of Traditional Shot Peening and Micro-Shot Peening on the Scuffing Resistance of Carburized and Quenched Gear Steel, Wear, 2016, 368–369, p 253–257. https://doi.org/10.1016/j.wear.2016.09.029

    Article  CAS  Google Scholar 

  10. H.S. Gupta, M. Hussain, P.K. Singh, V. Kumar, S. Kumar and A.K. Das, Laser Surface Modification of SAE8620 HVD Material for Transmission Gear, Mater. Today Proc., 2019, 11, p 813–817. https://doi.org/10.1016/j.matpr.2019.03.047

    Article  CAS  Google Scholar 

  11. M. Fan, R.L. Sun and H. Wang, Quality Analysis of Ni60/Ni/MoS2 Self-Lubricating Composite Coating on TC4 Surface by Laser Cladding, Hot Work. Technol., 2016, 45(12), p 123–126. https://doi.org/10.14158/j.cnki.1001-3814.2016.12.037

    Article  Google Scholar 

  12. P. Wang and Y.S. Ye, Solid Self-Lubricating Coatings on TC4 Titanium Alloy by Laser Cladding with h-BN, Surf. Technol., 2015, 44(08), p 44–48. https://doi.org/10.16490/j.cnki.issn.1001-3660.2015.08.008

    Article  CAS  Google Scholar 

  13. J. Xu, W.J. Liu and M.L. Zhong, Microstructure and Dry Sliding Wear Behavior of MoS2/TiC/Ni Composite Coatings Prepared by Laser Cladding, Surf. Coat. Technol., 2006, 200, p 4227–4232. https://doi.org/10.1016/j.surfcoat.2005.01.036

    Article  CAS  Google Scholar 

  14. M.S. Yang, X.B. Liu, J.W. Fan, X.M. He, S.H. Shi, G.Y. Fu, M.D. Wang and S.F. Chen, Microstructure and Wear Behaviors of Laser Clad NiCr/Cr3C2–WS2 High Temperature Self-Lubricating Wear-Resistant Composite Coating, Appl. Surf. Sci., 2012, 258(37), p 57–3762. https://doi.org/10.1016/j.apsusc.2011.12.021

    Article  CAS  Google Scholar 

  15. B. Podgornik, T. Kosec, A. Kocijan and Č Donik, Tribological Behavior and Lubrication Performance Of Hexagonal Boron Nitride (h-BN) as a Replacement for Graphite in Aluminium Forming, Tribol. Int., 2015, 81, p 267–275. https://doi.org/10.1016/j.triboint.2014.09.011

    Article  CAS  Google Scholar 

  16. H. Torres, S. Slawik, C. Gachot, B. Prakash and M. Rodríguez Ripoll, Microstructural Design of Self-Lubricating Laser Claddings for Use in High Temperature Sliding Applications, Surf. Coat. Technol., 2018, 337, p 24–34. https://doi.org/10.1016/j.surfcoat.2017.12.060

    Article  CAS  Google Scholar 

  17. A.K. Das, Effect of Solid Lubricant Addition in Coating Produced by Laser Cladding Process: A Review, Mater. Today Proc., 2022, 56, p 1274–1280. https://doi.org/10.1016/j.matpr.2021.11.217

    Article  Google Scholar 

  18. H. Torres, T. Vuchkov, S. Slawik, C. Gachot, B. Prakash and M. Rodríguez Ripoll, Self-Lubricating Laser Claddings for Reducing Friction and Wear from Room Temperature to 600 °C, Wear, 2018, 408, p 22–23. https://doi.org/10.1016/j.wear.2018.05.001

    Article  CAS  Google Scholar 

  19. M.M. Quazi, M.A. Fazal, A.S.M.A. Haseeb, F. Yusof, H.H. Masjuki and A. Arslan, A Review to the Laser Cladding of Self-Lubricating Composite Coatings, Lasers Manuf. Mater. Process., 2016, 3, p 67–99. https://doi.org/10.1007/s40516-016-0025-8

    Article  Google Scholar 

  20. G.M. Song, Y.T. Pei, W.G. Sloof, S.B. Li, J.T.M. Hosson and S. van der Zwaag, Oxidation-Induced Crack Healing in Ti3AlC2 Ceramics, Scr. Mater., 2008, 58, p 13–16. https://doi.org/10.1016/j.scriptamat.2007.09.006

    Article  CAS  Google Scholar 

  21. A.S. Farle, C. Kwakernaak, S. van der Zwaag and W.G. Sloof, A Conceptual Study into the Potential of Mn+1AXn-Phase Ceramics for Self-Healing of Crack Damage, J. Eur. Ceram. Soc., 2015, 35, p 37–45. https://doi.org/10.1016/j.jeurceramsoc.2014.08.046

    Article  CAS  Google Scholar 

  22. S. Li, G. Song, K. Kwakernaak, S. van der Zwaag and W.G. Sloof, Multiple Crack Healing of a Ti2AlC Ceramic, J. Eur. Ceram. Soc., 2012, 32, p 1813–1820. https://doi.org/10.1016/j.jeurceramsoc.2012.01.017

    Article  CAS  Google Scholar 

  23. H.J. Yang, Y.T. Pei and J.T.M. Hosson, Oxide-Scale Growth on Cr2AlC Ceramic and its Consequence for Self-Healing, Scr. Mater., 2013, 69, p 203–206. https://doi.org/10.1016/j.scriptamat.2013.04.013

    Article  CAS  Google Scholar 

  24. Z. Feng, P. Ke, Q. Huang and A. Wang, The Scaling Behavior and Mechanism of Ti2AlC MAX Phase Coatings in Air and Pure Water Vapor, Surf. Coat. Technol., 2015, 272, p 380–386. https://doi.org/10.1016/j.surfcoat.2015.03.037

    Article  CAS  Google Scholar 

  25. J. Cao, Z.W. Yin, H.L. Li, G.Y. Gao and X.L. Zhang, Tribological and Mechanical Properties of Ti2AlC Coating at Room Temperature and 800°C, Ceram. Int., 2018, 44, p 1046–1051. https://doi.org/10.1016/j.ceramint.2017.10.045

    Article  CAS  Google Scholar 

  26. M.W. Barsoum, The MN+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  27. M. Magnuson and M. Mattesini, Chemical Bonding and Electronic-Structure in MAX Phases as Viewed by X-ray Spectroscopy and Density Functional Theory, Thin Solid Films, 2017, 621, p 108–130. https://doi.org/10.1016/j.tsf.2016.11.005

    Article  CAS  Google Scholar 

  28. P. Eklund, M. Beckers, U. Jansson, H. Hogberg and L. Hultman, The Mn+1AXn Phases: Materials Science and Thin-Film Processing, Thin Solid Films, 2010, 518, p 1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  29. M.W. Qureshi, X.X. Ma, X.H. Zhang, G.Z. Tang, R. Paudel and D. Paudyal, Ab-Initio Predictions of Phase Stability, Electronic Structure, and Optical Properties of (0001)-MAXsurfaces in M2AC (M = Cr, Zr, Hf; A = Al, Ga), J. Phys. Chem. Solids, 2022, 160, p 110338. https://doi.org/10.1016/j.jpcs.2021.110338

    Article  CAS  Google Scholar 

  30. N. Goossens, B. Tunca, T. Lapauw, K. Lambrinou, J. Vleugels, in MAX Phases, Structure, Processing, and Properties, ed. by M. Pomeroy. Encyclopedia of Materials: Technical Ceramics and Glasses, (Elsevier, 2021), pp. 182–199. https://doi.org/10.1016/B978-0-12-818542-1.00015-1

  31. J.L. Smialek, Environmental resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37, p 23–34. https://doi.org/10.1016/j.jeurceramsoc.2016.07.038

    Article  CAS  Google Scholar 

  32. Y. Xiao, H.Q. Xiao, J.Y. Feng, B. Lin and Y. Wang, Core-shell ZrC/Ti2AlC Reinforced Composite Coatings Prepared by Laser Cladding on Zr-Alloy Substrates, Ceram. Int., 2022, 48(6), p 8136–8142. https://doi.org/10.1016/j.ceramint.2021.12.016

    Article  CAS  Google Scholar 

  33. Q.Y. Tan, W.M. Zhuang, M. Attia, R. Djugum and M.X. Zhang, Recent Progress in Additive Manufacturing of Bulk MAX Phase Components: A Review, J. Mater. Sci. Technol., 2022, 131, p 30–47. https://doi.org/10.1016/j.jmst.2022.05.026

    Article  CAS  Google Scholar 

  34. X.J. Li, S.H. Wang, G.X. Wu, D.P. Zhou, J.B. Pu, M. Yu, Q. Wang and Q.S. Sun, Oxidation and Hot Corrosion Behaviors of MAX-Phase Ti3SiC2, Ti2AlC, Cr2AlC, Ceram. Int., 2022 https://doi.org/10.1016/j.ceramint.2022.05.356

    Article  Google Scholar 

  35. Y. Zhu, X.B. Liu, Y.F. Liu, G. Wang, Y. Wang, Y. Meng and J. Liang, Development and Characterization of Co-Cu/Ti3SiC2 Self-Lubricating Wear Resistant Composite Coatings onTi6Al4V Alloy by Laser Cladding, Surf. Coat. Technol., 2021, 424, p 127664. https://doi.org/10.1016/j.surfcoat.2021.127664

    Article  CAS  Google Scholar 

  36. P. Richardson, D. Cuskelly, M. Brandt and E. Kisi, Microstructural Analysis of In-Situ Reacted Ti2AlC MAX Phase Composite Coating by Laser Cladding, Surf. Coat. Technol., 2020, 385, p 125360. https://doi.org/10.1016/j.surfcoat.2020.125360

    Article  CAS  Google Scholar 

  37. M. Das, S. Bysakh, D. Basu, T.S.S. Kumar, V.K. Balla, S. Bose and A. Bandyopadhyay, Microstructure, Mechanical and Wear Properties of Laser Processed SIC Particle Reinforced Coatings on Titanium, Surf. Coat. Technol., 2011, 205, p 4366–4373. https://doi.org/10.1016/j.surfcoat.2011.03.027

    Article  CAS  Google Scholar 

  38. X. Lei and N. Lin, Structure and Synthesis of MAX Phase Materials: A Brief Review, Crit. Rev. Solid State Mater. Sci., 2021 https://doi.org/10.1080/10408436.2021.1966384

    Article  Google Scholar 

  39. T.T. Ai, Q.F. Niu, Z.F. Deng, W.H. Li, H.F. Dong, R. Jing and X.Y. Zou, Nature-Inspired Nacre-Like Ti6Al4V-(Ti2AlC/TiAl) Laminate Composites Combining Appropriate Strengthand Toughness with Synergy Effects, Intermetallics, 2020, 121, p 106774. https://doi.org/10.1016/j.intermet.2020.106774

    Article  CAS  Google Scholar 

  40. H. Zhang, C.H. Zhang, Q. Wang, C.L. Wu, S. Zhang, J. Chen and A.O. Abdullah, Effect of Ni Content on Stainless Steel Fabricated by Laser Melting Deposition, Opt. Laser Technol., 2018, 101, p 363–371. https://doi.org/10.1016/j.optlastec.2017.11.032

    Article  CAS  Google Scholar 

  41. G.R. Xu, X.S. Guan, Y.L. Qiao and Y. Gao, Analysis and Innovation for Penetrant Testing for Airplane Parts, Proc. Eng., 2015, 99, p 1438–1442. https://doi.org/10.1016/j.proeng.2014.12.681

    Article  Google Scholar 

  42. J.H. Ye and D.L. Hu, Utility Inorganic Materials Thermodynamics Data Handbook, 2nd ed. Metallurgy Industry Press, Beijing, 2002.

    Google Scholar 

  43. J. Li, Z.S. Yu and H.P. Wang, Wear behaviors of an (TiB+TiC)/Ti Composite Coating Fabricated on Ti6Al4V by Laser Cladding, Thin Solid Films, 2011, 519(15), p 4804–4808. https://doi.org/10.1016/j.tsf.2011.01.034

    Article  CAS  Google Scholar 

  44. B. He, L.J. Zhang, Q.H. Zhu, J. Wang, X. Yun, J.S. Luo and Z.K. Chen, Effect of Solution Treated 316L Layer Fabricated by Laser Cladding on Wear and Corrosive Wear Resistance, Opt. Laser Technol., 2020, 121, p 105788. https://doi.org/10.1016/j.optlastec.2019.105788

    Article  CAS  Google Scholar 

  45. B.X. Song, T.B. Yu, X.G. Jiang, W.C. Xi and X.L. Lin, The Relationship Between Convection Mechanism and Solidification Structure of the Iron-Based Molten Pool in Metal Laser Direct Deposition, Int. J. Mech. Sci., 2020, 165, p 105207. https://doi.org/10.1016/j.ijmecsci.2019.105207

    Article  Google Scholar 

  46. A. Khorram, A.D. Jamaloei, A. Jafari, M. Paidar and X.J. Cao, Microstructural Evolution of Laser-Clad 75Cr3C2+25(80Ni20Cr) Powder on Inconel 718 Superalloy, J. Mater. Process. Technol., 2020, 284, p 116735. https://doi.org/10.1016/j.jmatprotec.2020.116735

    Article  CAS  Google Scholar 

  47. R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava and M. Radovic, Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165. https://doi.org/10.1016/j.actamat.2020.02.057

    Article  CAS  Google Scholar 

  48. Y. Wang, X.B. Liu, Y.F. Liu, Y.S. Luo and Y. Meng, Microstructure and Tribological Performance of Ni60-Based Composite Coatings on Ti6Al4V Alloy with Different Ti3SiC2 Ceramic Additions by Laser Cladding, Ceram. Int., 2020, 46(18), p 28996–29010. https://doi.org/10.1016/j.ceramint.2020.08.071

    Article  CAS  Google Scholar 

  49. Z.Y. Wang, G.S. Ma, Z.C. Li, H.T. Ruan, J.G. Yuan, L. Wang, P.L. Ke and A.Y. Wang, Corrosion Mechanism of Ti2AlC MAX Phase Coatings Under the Synergistic Effects of Water Vapor and Solid NaCl at 600 °C, Corros. Sci., 2021, 192, p 109788. https://doi.org/10.1016/j.corsci.2021.109788

    Article  CAS  Google Scholar 

  50. H.X. Liu, X.W. Zhang, Y.H. Jiang and R. Zhou, Microstructure and High Temperature Oxidation Resistance of In-Situ Synthesized TiN/Ti3Al Intermetallic Composite Coatings on Ti6Al4V Alloy by Laser Cladding Process, J. Alloy. Compd., 2016, 670, p 268–274. https://doi.org/10.1016/j.jallcom.2015.10.168

    Article  CAS  Google Scholar 

  51. S. Saroj, C.K. Sahoo, D. Tijo, K. Kumar and M. Masanta, Sliding Abrasive Wear Characteristic of TIG Cladded TiC Reinforced Inconel825 Composite Coating, Int. J. Refract. Metals Hard Mater., 2017 https://doi.org/10.1016/j.ijrmhm.2017.08.005

    Article  Google Scholar 

  52. X. Zhao, L.Y. Duan and Y.G. Wang, Improved Shear Strength of SiC-coated 3DC/SiC Composite Joints with a Tailored Ti-Si-C Interlayer, J. Eur. Ceram. Soc., 2019, 39(4), p 788–797. https://doi.org/10.1016/j.jeurceramsoc.2018.11.016

    Article  CAS  Google Scholar 

  53. A. Bansal, D.K. Goyal, P. Singh, A.K. Singla, M.K. Gupta, N. Bala, J. Kolte and G. Setia, Erosive Wear Behavior of HVOF-Sprayed Ni-20Cr2O3 Coating on Pipeline Materials, Int. J. Refract Metal Hard Mater., 2020, 92, p 105332. https://doi.org/10.1016/j.ijrmhm.2020.105332

    Article  CAS  Google Scholar 

  54. X. Li, C.H. Zhang, S. Zhang, C.L. Wu, Y. Liu, J.B. Zhang and M. Babar Shahzad, Manufacturing of Ti3SiC2 Lubricated Co-Based Alloy Coatings Using Laser Cladding Technology, Opt. Laser Technol., 2019, 114, p 209–215. https://doi.org/10.1016/j.optlastec.2019.02.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (No. 52075559) and the Open Project of the State Key Laboratory of Solid Lubrication (No. LSL-2102) provided financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

SH: investigation, Data curation, Writing original draft. MP: Conceptualization, Methodology, Formal analysis. JC: Supervision, Writing-review and editing. JZ: Investigation. F-QJ: Investigation.

Corresponding authors

Correspondence to Ming Pang or Jie Chen.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have seemed to impact the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, SW., Pang, M., Chen, J. et al. Microstructure and Tribological Performance of Laser Cladding Ti2AlC Particle Reinforced Coatings on Ti6Al4V. J. of Materi Eng and Perform 32, 8452–8466 (2023). https://doi.org/10.1007/s11665-022-07714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07714-3

Keywords

Navigation