Skip to main content
Log in

Tribological Performance and Wear Mechanism of Laser Cladded NiCrAl-WC Coatings at High-Temperature

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

NiCrAl-WC coatings with different WC contents were prepared on AISI H13 steel by laser cladding (LC) to improve its wear resistance at high temperature. The influence of WC content on the microstructure and phases of obtained coatings was analyzed via an ultra-depth microscope (UDM) and X-ray diffraction (XRD), respectively; and the tribological performance was investigated using a wear tester. The results show that the hardness of NiCrAl-10%WC, -25%WC, and -40%WC coatings is 444, 492, and 631 HV0.5, respectively. The NiCrAl-WC coatings present excellent wear resistance at high temperature, and the COF and wear rate of NiCrAl -40%WC coating are reduced by 17.8 and 67.5% compared with that of the substrate, respectively. The wear mechanism of NiCrAl-WC coatings is the combination of adhesive wear, abrasive wear, and oxidation wear, in which the NiCrAl-40%WC coating has the best wear resistance due to its high WC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao W, Kong DJ. Metal Science and Heat Treatment, 2020, 61: 717–723

    Article  Google Scholar 

  2. Wei MX, Wang SQ, Wang L, Cui XH, Chen KM. Tribology International, 2011, 44(7/8): 898–905

    Article  CAS  Google Scholar 

  3. Prakash K, Santanu P, Ramesh S, Yan WY. Journal of Manufacturing Processes, 2015, 20: 492–499

    Article  Google Scholar 

  4. Telasang G., Dutta Majumdar J., Padmanmabham G., Manna I. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surface and Coatings Technology, 2015, 261(15): 69–78

    Article  CAS  Google Scholar 

  5. Zhang J, Yu MJ, Li ZY, Liu Y, Zhang QM, Jiang R, Sun F. Journal of Alloys and Compounds, 2021, 856(5): 158168

  6. Xue KN, Lu HF, Luo KY, Cui CY. Surface and Coatings Technology, 2020, 402: 126488

  7. Li W, Kong DJ. Journal of Materials Engineering and Performance, 2021, 30: 2280–2290

    Article  CAS  Google Scholar 

  8. Huang SW, Samandi M, Brandt M. Wear, 2004, 256(11–12): 1095–1105

    Article  CAS  Google Scholar 

  9. Wang GY, Zhang JZ, Shu RY, Yang S. International Journal of Refractory Metals and Hard Materials, 2019, 81: 63–70

    Article  Google Scholar 

  10. Muvvala G, Karmakar DP, Nath AK. Materials and Design, 2017, 121(5): 310–320

    Article  CAS  Google Scholar 

  11. Yang JX, Xiao ZY, Yang F, Chen H, Wang XB, Zhou SF. Surface and Coatings Technology, 2018, 350(25): 110–118

    Article  CAS  Google Scholar 

  12. Zhang PL, Liu XP, Yan H. Surface and Coatings Technology, 2017, 332(25): 504–510

    Article  CAS  Google Scholar 

  13. Niu W, Sun RL. Chinese Journal of Lasers, 201l, 38(8): 0803011

  14. Yan XC, Chang C, Deng ZY, Lu BW, Chu QK, Chen XC, Ma WY, Liao HL, Liu M. Tribology International, 2021, 157: 106873

  15. Bartkowski D, Bartkowska A, Jurči P. Optics and Laser Technology, 2021, 136: 106784

  16. Xiao Q, Sun WL, Yang KX, Xing XF, Chen ZH, Zhou HN, Lu J. Surface and Coatings Technology, 2021, 420(25): 127341

  17. Li MY, Zhang Q, Han B, Song LX, Cui, Yang J, Li JL. Optics and Lasers in Engineering, 2020, 125: 105848

  18. Wu QL, Li WG, Zhong N, Gang W, Wang HS. Materials and Design, 2013, 49: 10–18

    Article  CAS  Google Scholar 

  19. Wu QL, Li WG. Materials Transactions, 2011, 52(3): 560–563

    Article  CAS  Google Scholar 

  20. Li WG, Zhang GJ, Li J. Key Engineering Materials, 2008, 368(2): 1872–1875

    Article  Google Scholar 

  21. Deschuyteneer D, Petit F, Gonon M, Cambier F. Surface and Coatings Technology, 2015, 283(15): 162–171

    Article  CAS  Google Scholar 

  22. Yan XC, Gao SH, Chang C, Huang J, Khashayar K, Dong DD, Ma WY, Nouredine F, Liao HL, Liu M. Journal of Materials Processing Technology, 2021, 288: 116878

  23. Zhou JL, Kong DJ. Surface and Coatings Technology, 2021, 408(25): 126816

  24. Li JF, Zhu ZC, Peng YX, Shen G. Vacuum, 2021, 190: 110242

  25. Zhou SF, Lei JB, Dai XQ, Guo JB, Gu ZJ, Pan HJ. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17–27

  26. Zhou SF, Wu C, Zhang TY, Zhang ZZ. Scripta Materialia, 2014, 76: 25–28

    Article  CAS  Google Scholar 

  27. Xie ZX, Zhang C, Wang RD, Li D, Zhang YW, Li GS, Lu XiG. Journal of Materials Research and Technology, 2021, 15: 821–833

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Dejun, K. Tribological Performance and Wear Mechanism of Laser Cladded NiCrAl-WC Coatings at High-Temperature. Trans Indian Inst Met 75, 1917–1928 (2022). https://doi.org/10.1007/s12666-022-02529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02529-1

Keywords

Navigation