Skip to main content
Log in

Unveiling the Room-Temperature Softening Phenomenon and Texture Evolution in Room-Temperature-Rolled Cu–0.13Sn Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this investigation, annealed Cu–0.13Sn alloys i.e., as-received samples were subjected to room-temperature rolling (RTR) at reduction ratios (RR) of 40 and 75 pct. Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) was used to discuss the microstructure evolution in the as-received and RTR samples. RTR deformation resulted in the formation of Copper-type shear bands (SBs). An unusual phenomenon of static recrystallization (SRX) at room-temperature (RT)/self-annealing was observed in the severely deformed Cu–0.13Sn alloy. SBs and deformed grain boundaries (GBs) were the main sites with high levels of stored energy (SE), and new grains were nucleated in those regions via discontinuous SRX (DSRX) in the RTR samples. Continuous SRX (CSRX) was observed in grains nucleated inside the deformed grains. The fraction of SBs was increased with increases in the RR, and visco-plastic self-consistent (VPSC) modelling was used to predict the texture of the SBs in the severely deformed Cu–0.13Sn alloy. Microstructural heterogeneities had a significant effect on the evolution of the crystallographic texture in as-received and RTR samples. Under low strain (40 pct RR), a Copper-type texture was observed, whereas the severely deformed sample (75 pct RR) showed strong Copper and S components, but weak Brass component. Self-annealed grains in the SB regions and in the deformed GB regions led to the evolution of strong Copper and Rotated Cube components, but weak Brass component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C:

Center region in RD-ND plane

CR:

Cryogenically rolled

CSRX:

Continuous static recrystallization

CT:

Cryogenic temperature

DSRX:

Discontinuous static recrystallization

EBSD:

Electron backscattered diffraction

EDS:

Energy-dispersive spectroscopy

GBs:

Grain boundaries

GOS:

Grain orientation spread

GS:

Grain size

GSAvg :

Average grain size

HR-TEM:

High-resolution transmission electron microscopy

IACS:

International Annealed Copper Standard (IACS)

IQ:

Image quality

IPF:

Inverse pole figure

KAM:

Kernel average misorientation

HAGBs:

High angle grain boundaries (> 15 deg)

LAGBs:

Low angle grain boundaries (3–15 deg)

LAB-I:

Low angle boundaries of type 1 (3–10 deg)

LAB-II:

Low angle boundaries of type 2 (10–15 deg)

ND:

Normal direction

ODF:

Orientation distribution function

Q:

Quarter region in RD-ND plane

RD:

Rolling direction

RR:

Reduction ratio

RT:

Room temperature

RTR:

Room-temperature rolling

RTR40:

Cu–0.13Sn samples rolled to 40 pct thickness reduction

RTR75:

Cu–0.13Sn samples rolled to 75 pct thickness reduction

S:

Surface region in RD-ND plane

SBs:

Shear bands

SE:

Stored energy

SFE:

Stacking fault energy

SLs:

Strain localizations

STEM:

Scanning transmission electron microscopy

ST1-ST4:

Slip traces of {111} plane

SRX:

Static recrystallization

SRV:

Static recovery

SEavg :

Average stored energy

TMP:

Thermomechanical processing

TD:

Transverse direction

VPSC:

Visco-plastic self-consistent

References

  1. M. Karthik, J. Abhinav, and K.V. Shankar: Met. Mater. Int., 2021, vol. 27, pp. 1915–46.

    Article  CAS  Google Scholar 

  2. J. Zhang, X. Cui, Y. Wang, Y. Yang, and J. Lin: Mater. Sci. Technol., 2014, vol. 30, pp. 506–509.

    Article  Google Scholar 

  3. K. Maki, Y. Ito, H. Matsunaga, and H. Mori: Scr. Mater., 2013, vol. 68, pp. 777–80.

    Article  CAS  Google Scholar 

  4. J. Zhang, X. Cui, J. Ma, and Y. Wang: Mater. Sci. Pol., 2016, vol. 34, pp. 142–47.

    Article  CAS  Google Scholar 

  5. W. Fan, J. Hui, Z. Xinfeng, W. Gao, and C. Xue: Mater. Res. Express, 2018, vol. 5, 106520.

    Article  Google Scholar 

  6. L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao: Mater. Chem. Phys., 2019, vol. 221, pp. 322–31.

    Article  CAS  Google Scholar 

  7. X. Zhang, X. Yang, W. Chen, J. Qin, and J. Fouse: Mater. Charact., 2015, vol. 106, pp. 100–107.

    Article  CAS  Google Scholar 

  8. Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, and T. Li: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1229–41.

    Article  Google Scholar 

  9. L. Zhang, X. Guo, Z. Li, D. Zhang, and E. Wang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6727–39.

    Article  Google Scholar 

  10. L. Jiang, H. Fu, C. Wang, W. Li, and J. Xie: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 331–41.

    Article  Google Scholar 

  11. S.H. Choi, J.K. Choi, H.W. Kim, and S.B. Kang: Mater. Sci. Eng. A, 2009, vol. 519, pp. 77–87.

    Article  Google Scholar 

  12. A. Gupta, T.-H. Yoo, L. Kaushik, J.W. Lee, Y.-K. Kim, and S.-H. Choi: Int. J. Plast., 2022, vol. 156, 103340.

    Article  CAS  Google Scholar 

  13. A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, 109884.

    Article  CAS  Google Scholar 

  14. Y. Geng, Y. Ban, B. Wang, X. Li, K. Song, Y. Zhang, Y. Jia, B. Tian, Y. Liu, and A.A. Volinsky: J. Mater. Res. Technol., 2020, vol. 9, pp. 11918–34.

    Article  CAS  Google Scholar 

  15. A. Gupta, R.K. Khatirkar, A. Kumar, K.S. Thool, N. Bhibhanshu, and S. Suwas: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1031–43.

    Article  Google Scholar 

  16. X.W. Li, X.M. Wu, Z.G. Wang, and Y. Umakoshi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 307–18.

    Article  CAS  Google Scholar 

  17. J. Hui, Z. Feng, C. Xue, and W. Gao: J. Mater. Sci., 2018, vol. 53, pp. 15308–18.

    Article  CAS  Google Scholar 

  18. D. Xu, M. Zhou, Y. Zhang, S. Tang, Z. Zhang, Y. Liu, B. Tian, X. Li, Y. Jia, A.A. Volinsky, D. Li, and Q. Liu: Mater. Charact., 2023, vol. 196, 112559https://doi.org/10.1016/j.matchar.2022.112559.

    Article  CAS  Google Scholar 

  19. J. Zhao, L. Zhang, F. Du, X. Yuan, and P. Wang: Materials, 2022, vol. 15, p. 4501. https://doi.org/10.3390/ma15134501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Semboshi, Y. Kaneno, T. Takasugi, S.Z. Han, and N. Masahashi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1389–96.

    Article  Google Scholar 

  21. M. Fatmi, T. Chihi, M.A. Ghebouli, B. Ghebouli, A. Derafa, F. Sahnoune, H. Belhouchet, and A. Gamoura: Am. J. Mech. Appl., 2013, vol. 1, pp. 1–4.

    Google Scholar 

  22. Z.J. Wang and T.J. Konno: Mater. Trans., 2012, vol. 53, pp. 1590–97.

    Article  CAS  Google Scholar 

  23. J.S. Huang, J. Zhang, A. Cuevas, and K.N. Tu: Mater. Chem. Phys., 1997, vol. 49, pp. 33–41.

    Article  CAS  Google Scholar 

  24. L. Lapeire, J. Sidor, P. Verleysen, K. Verbeken, I. De Graeve, H. Terryn, and L.A.I. Kestens: Acta Mater., 2015, vol. 95, pp. 224–35.

    Article  CAS  Google Scholar 

  25. I.F. Mohamed, Y. Yonenaga, S. Lee, K. Edalati, and Z. Horita: Mater. Sci. Eng. A, 2015, vol. 627, pp. 111–18.

    Article  CAS  Google Scholar 

  26. C.-H. Yang, Y.-W. Lee, C.-Y. Lee, P.-T. Lee, and C.-E. Ho: J. Electrochem. Soc., 2020, vol. 167, 082514.

    Article  CAS  Google Scholar 

  27. C.H. Yang, S.P. Yang, B.C. Huang, C.Y. Lee, H.C. Liu, and C.E. Ho: Surf. Coat. Technol., 2019, vol. 364, pp. 383–91.

    Article  CAS  Google Scholar 

  28. A. Gupta, L. Kaushik, T.-H. Yoo, J.W. Lee, Y.-K. Kim, D. Lee, Y.-U. Heo, and S.-H. Choi: Int. J. Plast., 2022, vol. 159, 103473.

    Article  CAS  Google Scholar 

  29. M.Y. Maeda, J.J.H. Quintero, M.T. Izumi, M.F. Hupalo, and O.M. Cintho: Mater. Res., 2017, vol. 20, pp. 716–21.

    Article  Google Scholar 

  30. C.T. Wang, Y. He, and T.G. Langdon: Acta Mater., 2020, vol. 185, pp. 245–56.

    Article  CAS  Google Scholar 

  31. N.X. Zhang, M. Kawasaki, Y. Huang, and T.G. Langdon: Mater. Sci. Eng. A, 2021, vol. 802, 140653.

    Article  CAS  Google Scholar 

  32. H.D. Meingelberg, M. Meixner, and K. Lucke: Acta Met., 1965, vol. 13, pp. 835–44.

    Article  Google Scholar 

  33. J.W. Patten, E.D. McClanahan, and J.W. Johnston: J. Appl. Phys., 1971, vol. 42, pp. 4371–77.

    Article  CAS  Google Scholar 

  34. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin: Scr. Mater., 2010, vol. 63, pp. 921–24.

    Article  CAS  Google Scholar 

  35. K. Edalati, Y. Hashiguchi, H. Iwaoka, H. Matsunaga, R.Z. Valiev, and Z. Horita: Mater. Sci. Eng. A, 2018, vol. 729, pp. 340–48.

    Article  CAS  Google Scholar 

  36. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7432–43.

    Article  CAS  Google Scholar 

  37. J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2192–3008.

    Article  Google Scholar 

  38. N. Jia, F. Roters, P. Eisenlohr, C. Kords, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1099–115.

    Article  CAS  Google Scholar 

  39. N.P. Gurao and S. Suwas: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 809–27.

    Article  Google Scholar 

  40. M.F. Sklate Boja and A.V. Druker: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 3986–4003.

    Article  Google Scholar 

  41. G.Z. Wassermann: Z. Met., 1963, vol. 54, p. 61.

    CAS  Google Scholar 

  42. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, and C. Necker: Acta Mater., 2000, vol. 48, pp. 2665–73.

    Article  CAS  Google Scholar 

  43. Z. Zheng, P. Guo, J. Li, T. Yang, Z. Song, C. Xu, and M. Zhou: J. Alloys Compd., 2020, vol. 831, 154842.

    Article  CAS  Google Scholar 

  44. R. Kumar, A. Gupta, A. Kumar, R.N. Chouhan, and R.K. Khatirkar: J. Alloys Compd., 2018, vol. 742, pp. 369–82.

    Article  CAS  Google Scholar 

  45. A. Paul, C. Ghosh, and W.J. Boettinger: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 952–63.

    Article  Google Scholar 

  46. S.I. Wright and M.M. Nowell: Microsc. Microanal., 2006, vol. 12, pp. 72–84.

    Article  CAS  PubMed  Google Scholar 

  47. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  48. S.H. Choi and Y.S. Jin: Mater. Sci. Eng. A, 2004, vol. 371, pp. 149–59.

    Article  Google Scholar 

  49. J.S. Kim, S.I. Kim, and S.H. Choi: Mater Charact, 2014, vol. 92, pp. 159–70.

    Article  CAS  Google Scholar 

  50. P. Wagner, O. Engler, and K. Lücke: Acta Metall. Mater., 1995, vol. 43, pp. 3799–812.

    Article  CAS  Google Scholar 

  51. N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao: Acta Mater., 2012, vol. 60, pp. 3415–34.

    Article  CAS  Google Scholar 

  52. H. Paul, A. Morawiec, E. Bouzy, J.J. Fundenberger, and A. Piatkowski: Metall Mater. Trans. A, 2004, vol. 35A, pp. 3775–86.

    Article  CAS  Google Scholar 

  53. D.P. Lu, J. Wang, W.J. Zeng, Y. Liu, L. Lu, and B. De Sun: Mater. Sci. Eng. A, 2006, vol. 421, pp. 254–59.

    Article  Google Scholar 

  54. O. Engler, C.N. Tomé, and M.Y. Huh: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2299–315.

    Article  CAS  Google Scholar 

  55. S. Han, K. Sohn, C. Kim, and S. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 465–69.

    Article  CAS  Google Scholar 

  56. I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–77.

    Article  CAS  Google Scholar 

  57. L. Kaushik, M.S. Kim, J. Singh, J.H. Kang, Y.U. Heo, J.Y. Suh, and S.H. Choi: Int. J. Plast., 2021, vol. 141, 102989.

    Article  CAS  Google Scholar 

  58. A. Gupta, K.S. Park, T.H. Yoo, A.K. Singh, D. Lee, Y.U. Heo, and S.H. Choi: Int. J. Plast., 2023, vol. 167, 103672.

    Article  CAS  Google Scholar 

  59. G. Wilde and H. Rösner: J. Mater. Sci., 2007, vol. 42, pp. 1772–81.

    Article  CAS  Google Scholar 

  60. P.M. Anderson, J.P. Hirth, and J. Lothe: Theory of Dislocations, Cambridge University Press, Cambridge, 2017.

    Google Scholar 

  61. K. Okuda and A.D. Rollett: Comput. Mater. Sci., 2005, vol. 34, pp. 264–73.

    Article  CAS  Google Scholar 

  62. H.T. Jeong and W.J. Kim: J. Mater. Sci. Technol., 2021, vol. 71, pp. 228–40.

    Article  CAS  Google Scholar 

  63. J.G. Kim, A. Gupta, M.-S. Kim, and S.-H. Choi: Mater. Sci. Eng. A, 2022, vol. 858, p. 144162.

    Article  CAS  Google Scholar 

  64. O. Engler: Mater. Sci. Eng. A, 2014, vol. 618, pp. 654–62.

    Article  CAS  Google Scholar 

  65. C. Li, X. Wang, B. Li, J. Shi, Y. Liu, and P. Xiao: J. Alloys Compd., 2020, vol. 818, pp. 1–7.

    Google Scholar 

  66. R. Li, S. Zhang, H. Kang, Z. Chen, F. Yang, W. Wang, C. Zou, T. Li, and T. Wang: J. Alloys Compd., 2017, vol. 693, pp. 592–600.

    Article  CAS  Google Scholar 

  67. Y. Lu, R. Ma, and Y.N. Wang: Trans. Nonferr. Met. Soc. China, 2015, vol. 25, pp. 2948–57.

    Article  CAS  Google Scholar 

  68. H. Paul, J.H. Driver, and Z. Jasieński: Acta Mater., 2002, vol. 50, pp. 815–30.

    Article  CAS  Google Scholar 

  69. P. Haasen: Scr. Metall. Mater., 1992, vol. 27, pp. 1477–84.

    Article  CAS  Google Scholar 

  70. A.A. Ridha and W.B. Hutchinson: Acta Metall., 1982, vol. 30, pp. 1929–39.

    Article  CAS  Google Scholar 

  71. H.T. Jeong and W.J. Kim: J. Mater. Sci. Technol., 2022, vol. 111, pp. 152–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Center for Materials Research Data (NCMRD) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021M3A7C2089777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hoon Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1759 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kaushik, L., Yoo, TH. et al. Unveiling the Room-Temperature Softening Phenomenon and Texture Evolution in Room-Temperature-Rolled Cu–0.13Sn Alloys. Metall Mater Trans A 55, 1516–1538 (2024). https://doi.org/10.1007/s11661-024-07341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07341-8

Navigation