Skip to main content

Advertisement

Log in

Effects of Lath Boundary Segregation and Reversed Austenite on Toughness of a High-Strength Low-Carbon Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Comprehending the mechanisms underlying embrittlement and de-embrittlement during tempering holds paramount importance in the advancement of high-strength and high-toughness steels. In this research, the influence of element segregation at martensite lath boundary and the formation of reversed austenite on toughness after aging were systematically investigated. A high-strength steel has been developed, exhibiting a V-notch impact toughness of 185 J/cm2 at − 80 °C, a yield strength of 980 MPa, and a total elongation of 20 pct. The findings indicate that the short aging can result in Mn segregation at the lath boundary, leading to embrittlement of the steel. In contrast, prolonged aging triggers Mo segregation at these boundaries, mitigating the Mn segregation effects. The mechanisms governing post-aging embrittlement and subsequent recovery are chiefly modulated by segregation of Mn and Mo at the martensite lath boundaries. Mn segregation at these boundaries correlates with diminished toughness, while Mo segregation serves to counteract the adverse consequences of Mn segregation, thereby reinstating superior toughness characteristics. Upon extended aging, notable segregation of Mn and Ni occurs at the lath boundaries, leading to a decline in the localized AC1 temperature and facilitating the development of a film-like reversed austenite structure along the martensite lath boundaries. This reversed austenite structure demonstrates remarkable stability, persisting well below − 130 °C. Both the segregation of Mo at the lath boundaries and the formation of the film-like reversed austenite significantly contribute to the enhancement of toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Yang, L. Wang, Z. Sun, J. Liu, S. Liu, and X. Jin: Mater. Lett., 2022, vol. 320, 132342.

    Article  CAS  Google Scholar 

  2. S.S.M. Tavares, R.P.C. da Cunha, C. Barbosa, and J.L.M. Andia: Eng. Fail. Anal., 2019, vol. 96, pp. 538–42.

    Article  CAS  Google Scholar 

  3. F. Dong, J. Venezuela, H. Li, Z. Shi, Q. Zhou, L. Chen, J. Chen, L. Du, and A. Atrens: Mater. Sci. Eng. A, 2022, vol. 854, 143379.

    Article  CAS  Google Scholar 

  4. K. Godbole, C.R. Das, S.K. Albert, and B.B. Panigrahi: Mater. Lett., 2020, vol. 264, 127321.

    Article  CAS  Google Scholar 

  5. C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, and D.H. Li: Mater. Sci. Eng. A, 2018, vol. 711, pp. 484–91.

    Article  CAS  Google Scholar 

  6. M. Zhu, G. Xu, M. Zhou, Q. Yuan, J. Tian, and H. Hu: Metals, 2018, vol. 8, p. 484.

    Article  Google Scholar 

  7. H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, and C.T. Liu: Acta Mater., 2019, vol. 172, pp. 150–60.

    Article  CAS  Google Scholar 

  8. H.J. Kong and C.T. Liu: 2018, vol. 6, p. 36.

  9. J. Li, C. Zhang, and Y. Liu: Mater. Sci. Eng. A, 2016, vol. 670, pp. 256–63.

    Article  CAS  Google Scholar 

  10. J. Schibler, C. D’Ambra, M. Roberts, M.V. Manuel, T.W. Krause, and A. Saleem: NDT E Int., 2022, vol. 132, 102728.

    Article  CAS  Google Scholar 

  11. R.M. Horn and R.O. Ritchie: Metall. Trans. A, 1978, vol. 9, pp. 1039–53.

    Article  Google Scholar 

  12. S.K. Bonagani, B. Vishwanadh, S. Tenneti, N.N. Kumar, and V. Kain: Int. J. Press. Vessels Piping, 2019, vol. 176, 103969.

    Article  CAS  Google Scholar 

  13. S.S. Xu, Y.W. Liu, Y. Zhang, J.H. Luan, J.P. Li, L.X. Sun, Z.B. Jiao, Z.W. Zhang, and C.T. Liu: Mater. Res. Lett., 2020, vol. 8, pp. 187–94.

    Article  CAS  Google Scholar 

  14. Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, and Z.W. Zhang: Int. J. Plast., 2019, vol. 116, pp. 203–15.

    Article  CAS  Google Scholar 

  15. X. Wei, X. Cao, J.H. Luan, Z.B. Jiao, C.T. Liu, and Z.W. Zhang: Mater. Sci. Eng. A, 2022, vol. 832, 142487.

    Article  CAS  Google Scholar 

  16. S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, L. Chen, X. Tong, C.T. Liu, and Z.W. Zhang: Int. J. Plast., 2019, vol. 113, pp. 99–110.

    Article  CAS  Google Scholar 

  17. D. Jain, D. Isheim, A.H. Hunter, and D.N. Seidman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3860–72.

    Article  Google Scholar 

  18. M. Kuzmina, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 182–92.

    Article  CAS  Google Scholar 

  19. Y.-J. Hu, Y. Wang, W.Y. Wang, K.A. Darling, L.J. Kecskes, and Z.-K. Liu: Comput. Mater. Sci., 2020, vol. 171, 109271.

    Article  CAS  Google Scholar 

  20. Y. Du, X. Hu, Y. Song, Y. Zhang, and L. Rong: Acta Metall. Sin., 2022, vol. 35, pp. 537–50.

    Article  CAS  Google Scholar 

  21. M.C. Niu, C.J. Chen, W. Li, K. Yang, J.H. Luan, W. Wang, and Z.B. Jiao: Acta Mater., 2023, vol. 253, 118972.

    Article  CAS  Google Scholar 

  22. X. Xi, J. Wang, L. Chen, and Z. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5627–39.

    Article  Google Scholar 

  23. H. Nakagawa, T. Miyazaki, and H. Yokota: J. Mater. Sci., 2000, vol. 35, pp. 2245–53.

    Article  CAS  Google Scholar 

  24. A.R. Hosseini Far, S.H. Mousavi Anijdan, and S.M. Abbasi: Mater. Sci. Eng. A, 2019, vol. 746, pp. 384–93.

    Article  Google Scholar 

  25. J. Kang, C. Li, G. Yuan, and G. Wang: Mater. Lett., 2016, vol. 175, pp. 157–60.

    Article  CAS  Google Scholar 

  26. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

  27. L.P. Kubin and A. Mortensen: Scripta Mater., 2003, vol. 48, pp. 119–25.

    Article  CAS  Google Scholar 

  28. N.H. Heo, J.W. Nam, Y.U. Heo, and S.J. Kim: Acta Mater., 2013, vol. 61, pp. 4022–34.

    Article  CAS  Google Scholar 

  29. R. Yang, D.L. Zhao, Y.M. Wang, S.Q. Wang, H.Q. Ye, and C.Y. Wang: Acta Mater., 2001, vol. 49, pp. 1079–85.

    Article  CAS  Google Scholar 

  30. W.T. Geng, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2001, vol. 63, 165415.

    Article  Google Scholar 

  31. F. Nikbakht, M. Nasim, C. Davies, E.A. Wilson, and H. Adrian: Mater. Sci. Technol., 2010, vol. 26, pp. 552–58.

    Article  CAS  Google Scholar 

  32. N.-H. Heo and H.-C. Lee: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1015–20.

    Article  CAS  Google Scholar 

  33. D.D. Shen, S.H. Song, Z.X. Yuan, and L.Q. Weng: Mater. Sci. Eng. A, 2005, vol. 394, pp. 53–59.

    Article  Google Scholar 

  34. W.T. Geng, A.J. Freeman, and G.B. Olson: Solid State Commun., 2001, vol. 119, pp. 585–90.

    Article  CAS  Google Scholar 

  35. M. Draper and S. Ankem: J. Mater. Sci., 2019, vol. 54, pp. 2601–11.

    Article  CAS  Google Scholar 

  36. J. Yoo, M.C. Jo, M.C. Jo, S. Kim, S.-H. Kim, J. Oh, S.S. Sohn, and S. Lee: Acta Mater., 2021, vol. 207, 116661.

    Article  CAS  Google Scholar 

  37. X. Wei, L. Sun, Z. Zhang, Y. Zhang, J. Luan, Z. Jiao, C.T. Liu, and G. Zhao: J. Mater. Res. Technol. 2023.

  38. J.I. Kim and J.W. Morris: Metall. Trans. A, 1980, vol. 11, pp. 1401–06.

    Article  Google Scholar 

  39. K.J. Kim and L.H. Schwartz: Mater. Sci. Eng., 1978, vol. 33, pp. 5–20.

    Article  CAS  Google Scholar 

  40. D. Frear and J.W. Morris: Metall. Trans. A, 1986, vol. 17, pp. 243–52.

    Article  Google Scholar 

  41. W.X. Zhang, Y.Z. Chen, Y.B. Cong, Y.H. Liu, and F. Liu: J. Mater. Sci., 2021, vol. 56, pp. 12539–58.

    Article  CAS  Google Scholar 

  42. S. Dépinoy, C. Toffolon-Masclet, S. Urvoy, J. Roubaud, B. Marini, F. Roch, E. Kozeschnik, and A.-F. Gourgues-Lorenzon: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2164–78.

    Article  Google Scholar 

  43. X. Li, Y. Fan, X. Ma, S.V. Subramanian, and C. Shang: Mater. Des., 2015, vol. 67, pp. 457–63.

    Article  CAS  Google Scholar 

  44. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–3702.

    Article  Google Scholar 

  45. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2016, vol. 675, pp. 153–63.

    Article  CAS  Google Scholar 

  46. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421–24.

    Article  CAS  Google Scholar 

  47. D. Barbier: Adv. Eng. Mater., 2014, vol. 16, pp. 122–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the NSFC Funding (U2141207, 52001083, 52171111) and the project from the Iron & Steel Research Institute of Ansteel Group Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Cao or Zhongwu Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Gong, T., Cao, X. et al. Effects of Lath Boundary Segregation and Reversed Austenite on Toughness of a High-Strength Low-Carbon Steel. Metall Mater Trans A 55, 1484–1494 (2024). https://doi.org/10.1007/s11661-024-07331-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07331-w

Navigation