Skip to main content
Log in

The embrittlement and de-embrittlement of grain boundaries in an Fe-Mn-Ni alloy due to grain boundary segregation of Mn

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A ductile-brittle-ductile (DBD) transition behavior in an age-hardenable Fe-8Mn-7Ni alloy has been analyzed in light of segregation and desegregation of alloying elements at prior austenite grain boundaries. The DBD transition in the alloy can be distinguished by two C-type curves: one corresponding to the start of zero tensile elongation and the other to the finish. The activation energies for ductile-to-brittle and brittle-to-ductile transitions are in close agreement with that for age hardening. Manganese content at the prior austenite grain boundaries was analyzed by Auger electron spectroscopy, and intergranular fracture strength at the brittle fracture region showed inverse trends with Mn concentration at the grain boundaries. All these observations strongly suggest that manganese segregation and its desegregation are responsible for the DBD transition of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Kardonsky and M.D. Perkas:Met. Sci. Heat Treat., 1966, No. 4, pp. 254-56.

  2. M. Tanaka, T. Suzuki, and M. Yodogawa:J. Jpn. Inst. Met., 1967, vol. 31, pp. 1075–81.

    CAS  Google Scholar 

  3. J. Manenc:Rev. Met., 1970, vol. 67, pp. 443–50.

    CAS  Google Scholar 

  4. M. Yodogawa, T. Suzuki, and M. Tanaka:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 295–303.

    CAS  Google Scholar 

  5. D.R. Squire and E.A. Wilson:Metall. Trans., 1972, vol. 3, pp. 575–81.

    Google Scholar 

  6. N.H. Heo: Ph.D. Thesis, Seoul National University, Seoul, 1993.

    Google Scholar 

  7. E.D. Hondros and M.P. Seah:Int. Metall. Rev., 1977, vol. 222, pp. 262–301.

    Google Scholar 

  8. L.E. Davis, N.C. McDonald, P.W. Palmberg, E. Riach, and R.E. Weber:Handbook of Auger Electron Spectroscopy, 2nd ed., Physical Electronics, Edina, MN, 1976.

    Google Scholar 

  9. C.J. Powell:Surf. Sci., 1974, vol. 44, pp. 29–46.

    Article  CAS  Google Scholar 

  10. M. Guttman:Surf. Sci., 1975, vol. 53, pp. 213–27.

    Article  Google Scholar 

  11. M.P. Seah:Acta Metall., 1977, vol. 25, pp. 345–57.

    Article  CAS  Google Scholar 

  12. M.P. Seah:Acta Metall., 1980, vol. 28, pp. 955–62.

    Article  CAS  Google Scholar 

  13. W. Steven and J. Balajiva:J. Iron Steel Inst., 1959, vol. 193, pp. 141–47.

    CAS  Google Scholar 

  14. B.J. Schulz and C.J. McMahon: ASTM-STP, ASTM, Philadelphia, PA, 1972, vol. 499, pp. 104-35.

  15. Y.Q. Weng and C.J. McMahon:Mater. Sci. Technol., 1986, vol. 3, pp. 207–16.

    Google Scholar 

  16. J.D. Bolton: Ph.D. Thesis, Sheffield Polytechnic, Sheffield, 1970.

    Google Scholar 

  17. D. McLean:Grain Boundary in Metals, Oxford University Press, Oxford, United Kingdom, 1957, ch. V, pp. 117–49.

    Google Scholar 

  18. M.P. Seah and E.D. Hondros:Proc. R. Soc., London, 1973, vol. 335(A), pp. 191–212.

    CAS  Google Scholar 

  19. S. Floreen and G.R. Speich:Trans. ASM., 1964, vol. 57, pp. 714–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical Engineering, Seoul National University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, NH., Lee, HC. The embrittlement and de-embrittlement of grain boundaries in an Fe-Mn-Ni alloy due to grain boundary segregation of Mn. Metall Mater Trans A 27, 1015–1020 (1996). https://doi.org/10.1007/BF02649769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649769

Keywords

Navigation