Skip to main content

Advertisement

Log in

Tailoring the Microstructure and Properties of Reinforced FeMnAlC Composites by In-Situ TiB2–TiC–M2B Formation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, Ti and B were added to lightweight Fe–Mn–Al–C steels matrix with 0, 0.1, and 0.4 wt pct C in order to evaluate the in-situ formation of reinforcing particles and their influence on the properties. The compositions were tailored by thermodynamic calculations and experimentally validated. Both titanium and boron were introduced in stoichiometry proportions for TiB2 formation. The composites were processed by arc-melting followed by hot rolling and annealing. The experimental results showed that carbon plays a key role in the system since it leads to TiC and (Fe,Mn)2B formation and, consequently, reduction of the TiB2 fraction. The composite with the highest Ti, B, and C contents achieved the highest specific modulus value (29.5 GPa cm3 g−1), with a density and modulus of elasticity of 7.09 g cm−3 and 209.3 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, and D. Raabe: Sci. Rep., 2017, vol. 7, p. 2757.

    Article  CAS  Google Scholar 

  2. A.L. Vidilli, L.B. Otani, W. Wolf, C.S. Kiminami, W.J. Botta, F.G. Coury, and C. Bolfarini: J. Alloys Compd., 2020, vol. 831, p. 154806.

    Article  CAS  Google Scholar 

  3. L. Otani, A. Vidilli, F. Coury, C. Kiminami, W. Botta, G. Zepon, and C. Bolfarini: Metals (Basel), 2020, vol. 10, p. 352.

    Article  CAS  Google Scholar 

  4. J.K. Kim, L. Chen, H.S. Kim, S.K. Kim, Y. Estrin, and B.C. De Cooman: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3147–58.

    Article  Google Scholar 

  5. G.R. Lehnhoff, K.O. Findley, and B.C. De Cooman: Scr. Mater., 2014, vol. 92, pp. 19–22.

    Article  CAS  Google Scholar 

  6. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Prog. Mater. Sci., 2017, vol. 89, pp. 345–91.

    Article  CAS  Google Scholar 

  7. A. Latapie and D. Farkas: Scr. Mater., 2003, vol. 48, pp. 611–15.

    Article  CAS  Google Scholar 

  8. R. Rana and C. Liu: Can. Metall. Q., 2014, vol. 53, pp. 300–16.

    Article  CAS  Google Scholar 

  9. S.A. Kim and W.L. Johnson: Mater. Sci. Eng. A, 2007, vol. 452–453, pp. 633–39.

    Article  Google Scholar 

  10. F. Bonnet, V. Daeschler, and G. Petitgand: Can. Metall. Q., 2014, vol. 53, pp. 243–52.

    Article  CAS  Google Scholar 

  11. H. Springer, C. Baron, F. Mostaghimi, J. Poveleit, L. Mädler, and V. Uhlenwinkel: Addit. Manuf., 2020, vol. 32, p. 101033.

    CAS  Google Scholar 

  12. H. Zhang, H. Springer, R. Aparicio-Fernández, and D. Raabe: Acta Mater., 2016, vol. 118, pp. 187–95.

    Article  CAS  Google Scholar 

  13. C. Baron, H. Springer, and D. Raabe: Mater. Des., 2016, vol. 97, pp. 357–63.

    Article  CAS  Google Scholar 

  14. B.B. He and J.Q. Zhang: Metall. Mater. Trans. A, 2021, vol. 52, pp. 4311–16.

    Article  CAS  Google Scholar 

  15. N. Yang and I. Sinclair: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2017–24.

    Article  CAS  Google Scholar 

  16. C.C. Degnan and P.H. Shipway: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2973–83.

    Article  Google Scholar 

  17. Z.C. Luo, B.B. He, Y.Z. Li, and M.X. Huang: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1981–89.

    Article  Google Scholar 

  18. H. Springer, R.A. Fernandez, M.J. Duarte, A. Kostka, and D. Raabe: Acta Mater., 2015, vol. 96, pp. 47–56.

    Article  CAS  Google Scholar 

  19. Y.Z. Li and M.X. Huang: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2144–48.

    Article  Google Scholar 

  20. F. Akhtar: J. Alloys Compd., 2008, vol. 459, pp. 491–97.

    Article  CAS  Google Scholar 

  21. I. Gutierrez-Urrutia and D. Raabe: Scr. Mater., 2013, vol. 68, pp. 343–47.

    Article  CAS  Google Scholar 

  22. J.B. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, and C.G. Park: Scr. Mater., 2013, vol. 68, pp. 348–53.

    Article  CAS  Google Scholar 

  23. H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, and F. Zhao: Mater. Lett., 2004, vol. 58, pp. 3509–13.

    Article  CAS  Google Scholar 

  24. A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, and J. Eckert: Acta Mater., 2006, vol. 54, pp. 157–66.

    Article  CAS  Google Scholar 

  25. R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang, and D. Raabe: Acta Mater., 2016, vol. 107, pp. 38–48.

    Article  Google Scholar 

  26. J. Han, S. Xiao, J. Tian, Y. Chen, L. Xu, X. Wang, Y. Jia, Z. Du, and S. Cao: Mater Charact, 2015, vol. 106, pp. 112–22.

    Article  CAS  Google Scholar 

  27. B. Almangour, D. Grzesiak, and J.M. Yang: J. Alloys Compd., 2016, vol. 680, pp. 480–93.

    Article  CAS  Google Scholar 

  28. B. AlMangour, Y.K. Kim, D. Grzesiak, and K.A. Lee: Compos. B, 2019, vol. 156, pp. 51–63.

    Article  CAS  Google Scholar 

  29. L. Ma, T. Jia, G. Li, J. Hu, J.A. Jimenez, and X. Gao: Mater. Sci. Eng. A, 2020, vol. 784, p. 139333.

    Article  CAS  Google Scholar 

  30. J. Lentz, A. Röttger, and W. Theisen: Mater Charact, 2018, vol. 135, pp. 192–202.

    Article  CAS  Google Scholar 

  31. C. Baron, H. Springer, and D. Raabe: Mater. Des., 2016, vol. 111, pp. 185–91.

    Article  CAS  Google Scholar 

  32. X. Wei, Z. Chen, J. Zhong, L. Wang, W. Yang, and Y. Wang: Comput. Mater. Sci., 2018, vol. 147, pp. 322–30.

    Article  CAS  Google Scholar 

  33. B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng, and R. Zhou: Phys. B Condens. Matter, 2010, vol. 405, pp. 1274–78.

    Article  CAS  Google Scholar 

  34. Y. Jian, Z. Huang, J. Xing, and Y. Gao: J. Mater. Sci., 2018, vol. 53, pp. 5329–38.

    Article  CAS  Google Scholar 

  35. Y. Jian, H. Ning, Z. Huang, Y. Wang, and J. Xing: J. Mater. Res. Technol., 2021, vol. 14, pp. 1301–11.

    Article  CAS  Google Scholar 

  36. R.G. Munro: J. Res. Natl. Inst. Stand. Technol., 2000, vol. 105, p. 709.

    Article  CAS  Google Scholar 

  37. U. Pandey, R. Purohit, P. Agarwal, S.K. Dhakad, and R.S. Rana: Mater. Today Proc., 2017, vol. 4, pp. 5452–60.

    Article  Google Scholar 

  38. Y. Jian, Z. Huang, X. Liu, J. Sun, and J. Xing: J. Mater. Sci. Technol., 2020, vol. 57, pp. 172–79.

    Article  CAS  Google Scholar 

  39. R. Kalsar and S. Suwas: Scr. Mater., 2018, 154, vol. 154, pp. 207–11.

  40. P.H.F. Oliveira, D.C.C. Magalhães, M.T. Izumi, O.M. Cintho, A.M. Kliauga, and V.L. Sordi: Mater. Sci. Eng. A, 2021, vol. 813, p. 141154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) for the financial support. The authors thank the Institute of Materials Technology (ITM/UPV) and Laboratory of Structural Characterization (LCE/DEMa/UFSCar) for the general facilities. GG acknowledges UNAM-DGAPA-PASPA program for supporting his sabbatical year at UPV.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulos – FAPESP (Process Numbers: 2016/11309-0, 2020/05049-1, and 2021/11537-1); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; the Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil - CNPq (Grant Number 141250/2020-8, and Process No. 403955/2021-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. Vidilli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidilli, A.L., Coury, F.G., Gonzalez, G. et al. Tailoring the Microstructure and Properties of Reinforced FeMnAlC Composites by In-Situ TiB2–TiC–M2B Formation. Metall Mater Trans A 55, 101–117 (2024). https://doi.org/10.1007/s11661-023-07230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07230-6

Navigation