Skip to main content
Log in

Plasticity of Coarse Martensite Laths Within the Heat-Affected Zone of 9Ni Steel Girth-Welded Pipes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Presenting a low Ductile–Brittle transition temperature compared to other body-centered cubic structural steels, lath martensitic steels, such as 9Ni steels, are the most prominent high-strength steels proposed for low-temperature and cryogenic services. In the past couple of decades, broad access to tools and instrumentation required to map complex crystallographic relations allowed authors to draw several relations between the lath martensite microstructure and the mechanical properties of those steels. Recently, morphological heterogeneity of lath martensite microstructure has been pointed out as a microstructural feature responsible for the scattering in local yield strength within the microstructure, with coarse martensite laths acting as soft zones with enhanced deformation ability. The present work conducts an investigation covering macro- to micro-plasticity of 9Ni steel-welded joints, focusing on the heat-affected zone (HAZ) and the contribution of these coarse laths to the strain mechanisms of the microstructure. Tensile tests and Electron Backscatter Diffraction (EBSD) analyses were conducted over a selected area in tensile specimens at progressive strain levels. Local strain measurements revealed that the coarse-grained HAZ (CGHAZ) is the only HAZ region that experiences significant strain, with the Subcritically reheated CGHAZ (SC-CGHAZ) presenting the highest strain levels. Regarding the coarse lath contribution, EBSD analyses revealed that, up to 7 pct strain, these coarse constituents present a progressive increase in geometrically necessary dislocations density increasing rate, indicating that they may carry plasticity for even further stages of the plastic regime. However, at the beginning of plastic deformation, dislocation activity is mainly observed at thin lath areas due to the deformation-driven martensitic transformation of interlath austenite films.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.W. Morris: ISIJ Int., 2011, vol. 51, pp. 1569–75. https://doi.org/10.2355/isijinternational.51.1569.

    Article  CAS  Google Scholar 

  2. H.S. Shin, H.M. Lee, M.S. Kim: Int. J. Impact Eng., 2000, vol. 24, pp. 571–81. https://doi.org/10.1016/S0734-743X(99)00181-5.

    Article  Google Scholar 

  3. F.W.C Farias, J.C. Payão Filho, L.M.B. de Azevedo: Metals, 2018 , vol. 8, p. 1007. https://doi.org/10.3390/met8121007.

    Article  CAS  Google Scholar 

  4. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99. https://doi.org/10.1016/S1359-6454(02)00577-3.

    Article  CAS  Google Scholar 

  5. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88. https://doi.org/10.1016/j.actamat.2005.11.001.

    Article  CAS  Google Scholar 

  6. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31. https://doi.org/10.1016/j.actamat.2006.07.009.

    Article  CAS  Google Scholar 

  7. L. Yu, X. Xiao, L. Chen, Y. Cheng, H. Duan: Int. J. Plast., 2018, vol. 111, pp. 135–51. https://doi.org/10.1016/j.ijplas.2018.07.012.

    Article  CAS  Google Scholar 

  8. A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7538–44. https://doi.org/10.1016/j.msea.2010.08.026.

    Article  CAS  Google Scholar 

  9. C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers: Scr. Mater., 2016, vol. 116, pp. 117–21. https://doi.org/10.1016/j.scriptamat.2016.01.043.

    Article  CAS  Google Scholar 

  10. S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang, Y.L. Yi : Mater. Sci. Eng. A, 2016, vol. 676, pp. 38–47. https://doi.org/10.1016/j.msea.2016.08.065.

    Article  CAS  Google Scholar 

  11. M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, T. Koseki: Acta Mater., 2009, vol. 57, pp. 5283–91. https://doi.org/10.1016/j.actamat.2009.06.021.

    Article  CAS  Google Scholar 

  12. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe: Acta Mater., 2016, vol. 121, pp. 202–14. https://doi.org/10.1016/j.actamat.2016.09.006.

    Article  CAS  Google Scholar 

  13. C.W. Marshall, R.F. Hehemann, A.R. Troiano: Trans. Am. Soc. Met., 1962, vol. 55, p. 135.

    Google Scholar 

  14. J.R. Strife and D.E. Passoja: Metall. Trans. A, 1980, vol. 11A, p. 1341. https://doi.org/10.1007/BF02653488.

    Article  CAS  Google Scholar 

  15. Q. Ahsan, A.S.M.A Haseeb, N.I.S.B. Hussein, S.Y. Chang. In: S. Hashmi, G.F. Batalha, C.J. Van-Tyne, and B. Yilba (editors): Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 135–49.

  16. F. Maresca, V.G. Kouznetsova, M.G.D Geers: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 045011. https://doi.org/10.1088/0965-0393/22/4/045011.

    Article  Google Scholar 

  17. R.W. Fonda and G. Spanos: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5982–89. https://doi.org/10.1007/s11661-014-2588-3.

    Article  CAS  Google Scholar 

  18. L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–77. https://doi.org/10.1016/j.actamat.2015.05.023.

    Article  CAS  Google Scholar 

  19. G. Badinier, C.W. Sinclair, X. Sauvage, X. Wang, V. Bylik, M. Gouné, F. Danoix: Mater. Sci. Eng. A, 2015, vol. 638, pp. 329–39. https://doi.org/10.1016/j.msea.2015.04.088.

    Article  CAS  Google Scholar 

  20. H.K.D.H Bhadeshia, E. Keehan, L. Karlsson, H.O. Andrén: Trans. Indian Inst. Met., 2006, vol. 59, pp. 689–94.

    CAS  Google Scholar 

  21. L. Qian, Z. Li, T. Wang, D. Li, F. Zhang, J. Meng: J. Mater. Sci. Technol., 2022, vol. 96, pp. 69–84. https://doi.org/10.1016/j.jmst.2021.05.002.

    Article  CAS  Google Scholar 

  22. S. Ueki, Y. Mine, K. Takashima: Mater. Sci. Eng. A, 2020, vol. 773, p. 138830. https://doi.org/10.1016/j.msea.2019.138830.

    Article  CAS  Google Scholar 

  23. E.J. Barrick, D. Jain, J.N DuPont, D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5890–910. https://doi.org/10.1007/s11661-017-4379-0.

    Article  CAS  Google Scholar 

  24. E.J. Barrick and J.N. DuPont. Mater. Sci. Eng. A, 2019, vol. 748, pp. 189–204. https://doi.org/10.1016/j.msea.2019.01.085.

    Article  CAS  Google Scholar 

  25. V.S. Fernandes, F.W.C. Farias, J.C. Payão Filho: J. Mater. Res. Technol., 2020, vol. 9, pp. 6305–21. https://doi.org/10.1016/j.surfcoat.2019.06.084.

    Article  CAS  Google Scholar 

  26. M.C.G. Rios, J.C. Payão Filho, F.W.C Farias, V.H.P.M. Oliveira, A.V. Passos: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 5016–31. https://doi.org/10.1007/s11661-021-06446-8.

    Article  CAS  Google Scholar 

  27. S. Kou: Welding Metallurgy, 2003, ed. 2, Wiley, Hoboken, NJ.

    Google Scholar 

  28. P.P.N. Maia, E.M. Miná, G. Dalpiaz, R.R. Marinho, M.T.P. Paes, M.F. Motta, H.C. Miranda, C.C. Silva: J. Mater. Res. Technol., 2023, vol. 24, pp. 1716–32. https://doi.org/10.1016/j.jmrt.2023.03.092.

    Article  CAS  Google Scholar 

  29. B. Beausir and J. Fundenberger: Analysis Tools for Electron and X-Ray Diffraction (ATEX—software, 2017). http://www.atex-software.eu/. Accessed 14 April 2022.

  30. AWS: A5.14/A5.14M, Standard, Miami, FL, 2011.

  31. ASTM: A333/A333M-18, Standard, West Conshohocken, PA, 2018.

  32. L. Morsdorf, E. Emelina, B. Gault, M. Herbig, C.C. Tasan: Acta Mater., 2021, vol. 205, p. 116521. https://doi.org/10.1016/j.actamat.2020.116521.

    Article  CAS  Google Scholar 

  33. S.I. Wright, M.M. Nowell, D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29. https://doi.org/10.1017/S1431927611000055.

    Article  CAS  Google Scholar 

  34. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46. https://doi.org/10.1016/j.msea.2010.01.004.

    Article  CAS  Google Scholar 

  35. M. Shamsujjoha: Mater. Sci. Eng. A, 2020,vol. 776, p. 139039. https://doi.org/10.1016/j.msea.2020.139039.

    Article  CAS  Google Scholar 

  36. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–97. https://doi.org/10.1016/j.scriptamat.2008.01.050.

    Article  CAS  Google Scholar 

  37. S. Morito, J. Nishikawa, T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475–77. https://doi.org/10.2355/isijinternational.43.1475.

    Article  CAS  Google Scholar 

  38. S. Harjo, T. Kawasaki, Y. Tomota, W. Gong, K. Aizawa, G. Tichy, Z. Shi, T. Ungár: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4080–92. https://doi.org/10.1007/s11661-017-4172-0.

    Article  CAS  Google Scholar 

  39. M.A.C. Araujo, J.B. Vogt, J. Bouquerel: Int. J. Fatigue, 2021, vol. 152, p. 106445. https://doi.org/10.1016/j.ijfatigue.2021.106445.

    Article  CAS  Google Scholar 

  40. C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers: Scr. Mater., 2016, vol. 120, pp. 37–40. https://doi.org/10.1016/j.scriptamat.2016.04.006.

    Article  CAS  Google Scholar 

  41. S. Morito, T. Ohba, A.K. Das, T. Hayashi, M. Yoshida: ISIJ Int., 2013, vol. 53, pp. 2226–32. https://doi.org/10.2355/tetsutohagane.98.245.

    Article  CAS  Google Scholar 

  42. F. Maresca, W.A. Curtin: Acta Mater., 2017, vol. 134, pp. 302–23. https://doi.org/10.1016/j.actamat.2017.05.044.

    Article  CAS  Google Scholar 

  43. F. Maresca, V.G. Kouznetsova, M.G.D. Geers, W.A. Curtin: Acta Mater., 2018, vol. 156, pp. 463–78. https://doi.org/10.1016/j.actamat.2018.06.028.

    Article  CAS  Google Scholar 

  44. C. Du, R. Petrov, M.G.D. Geers, J.P.M. Hoefnagels: Mater. Des., 2019, vol. 176, pp. 0264–275. https://doi.org/10.1016/j.matdes.2019.107646.

    Article  CAS  Google Scholar 

  45. T. Ohmura, A.M. Minor,d E.A. Stach, J.W. Morris: J. Mater. Res., 2004, vol. 19, pp. 3626–32. https://doi.org/10.1557/JMR.2004.0474.

    Article  CAS  Google Scholar 

  46. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  47. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, 1993, ed. 1, Oxford University Press, Oxford.

    Google Scholar 

  48. S.I. Wright, S. Suzuki, M. M. Nowell: JOM, 2016, vol. 68, pp. 2730–36. https://doi.org/10.1007/s11837-016-2084-x.

    Article  Google Scholar 

  49. M.R. Stoudt, L.E. Levine, A. Creuziger, J.B. Hubbard: Mater. Sci. Eng. A., 2011, vol. 530, pp. 107–16. https://doi.org/10.1016/j.msea.2011.09.050.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Laboratório de Pesquisa e Tecnologia em Soldagem (LPTS) of the Universidade Federal do Ceará (UFC), and the Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), the Financiadora de Estudos e Projetos (FINEP) and the Ministério da Ciência, Tecnologia e Inovação (MCTI) for the financial support through the Programa de Recursos Humanos da ANP para o Setor Petróleo e Gás (PRH-ANP/MCTI). The authors would also like to thank the Petróleo Brasileiro S. A. (Petrobras) for the donation of the 9Ni steel pipes. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro P. N. Maia or Cleiton C. Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, P.P.N., Miná, É.M., Dalpiaz, G. et al. Plasticity of Coarse Martensite Laths Within the Heat-Affected Zone of 9Ni Steel Girth-Welded Pipes. Metall Mater Trans A 54, 4409–4426 (2023). https://doi.org/10.1007/s11661-023-07174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07174-x

Navigation