Skip to main content
Log in

Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m−2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Maki: Proc. 1st Int. Symp. on Steel Sci., 2007, pp. 1–10.

  2. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

  3. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  Google Scholar 

  4. K. Nakashima, Y. Fujimura, H. Matsubayashi, T. Tsuchiyama and S. Takaki: Tetsu-to-Hagane, 2007, vol. 93, pp. 459–65.

    Article  Google Scholar 

  5. S. Morooka, Y. Tomota and T. Kamiyama: ISIJ Int., 2008, vol. 48, pp. 525–30.

    Article  Google Scholar 

  6. G.K. Williamson and R.E. Smallman: Phil. Mag., 1956, vol. 1, pp. 34–46.

    Article  Google Scholar 

  7. G.I. Taylor: Proc. R. Soc. A, 1934, vol. 45, pp. 362–87.

    Article  Google Scholar 

  8. T. Ungár, L. Li, G. Tichy, W. Pantleon, H. Choo and P.K. Liaw: Scripta Mater., 2011, vol. 64, pp. 876–79.

    Article  Google Scholar 

  9. B. Hutchinson, D. Lindell and M. Barnett: ISIJ Int., 2015, vol. 55, pp. 1114–22.

    Article  Google Scholar 

  10. M.R. Daymond, C.N. Tomé and M.A.M. Bourke: Acta Mater., 2000, vol. 48, pp. 553–64.

    Article  Google Scholar 

  11. Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida and D. Neov: Acta Mater., 2003, vol. 51, pp. 819–30.

    Article  Google Scholar 

  12. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45.

    Article  Google Scholar 

  13. M.R. Daymond, C. Hartig and H. Mecking: Acta Mater., 2005, vol. 53, pp. 2805–13.

    Article  Google Scholar 

  14. O. Muransky, P. Sittner, J. Zrnik and E.C. Oliver: Acta Mater., 2008, vol. 56, pp. 3367–79.

    Article  Google Scholar 

  15. S. Harjo, J. Abe, K. Aizawa, W. Gong and T. Iwahashi: JPS Conf. Proc., 2014, vol. 1, 014017.

  16. S. Morooka, T. Tsuchiyama, S. Harjo and K. Aizawa: CAMP-ISIJ, 2014, vol. 168, p. 866.

    Google Scholar 

  17. T. Ungár, S. Harjo, T. Kawasaki, Y. Tomota, G. Ribarik and Z. Shi: Metall. Mat. Trans. A, 2016, vol 48A, pp. 159–167.

    Google Scholar 

  18. H. Mughrabi, T. Ungár, W. Kienle and M. Wilkens: Philos. Mag. A, 1986, vol. 53, pp. 793–813.

    Article  Google Scholar 

  19. B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sørensen, C. Gundlach and W. Pantleon: Science, 2006, vol. 312, pp. 889–92.

    Article  Google Scholar 

  20. T. Ungár, J. Gubicza, G. Ribarik and A. Borbely: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.

    Article  Google Scholar 

  21. G. Ribarik and T. Ungár: Mater. Sci. Eng. A, 2010, vol. 528, pp. 112-21.

    Article  Google Scholar 

  22. Z. Shi, K. Liu, M. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y. Zhang and L. Jian: Met. Mater. Int., 2012, vol. 18, pp. 317–20.

    Article  Google Scholar 

  23. S. Harjo, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi and T. Kamiyama: Mater. Sci. Forum, 2011, vol. 681, pp. 443–48.

    Article  Google Scholar 

  24. R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama: Nucl. Instrum. Methods A, 2009, vol. 600, pp. 94–96.

    Article  Google Scholar 

  25. K. Iakoubovskii, K. Mitsuishi and K. Furuya: Nanotechnology, 2008, vol. 19, 155705.

  26. O.D. Sherby, J. Wadsworth, D.R. Lesuer and C.K. Syn: Mater. Trans., 2008, vol. 49, pp. 2016–27.

    Article  Google Scholar 

  27. Y. Tomota, H. Tokuda, S. Torii and T. Kamiyama: Mater. Sci. Eng. A, 2006, vol. 434, pp. 82–87.

    Article  Google Scholar 

  28. L.D. Landau and E.M. Lifshitz: Theory of Elasticity, 1st English ed., Pergamon Press, London, 1959, pp. 1–42.

    Google Scholar 

  29. T.H. Courtney, Mechanical Behavior of Materials, 2nd ed., Waveland Press Inc., Long Grove, 1990, pp. 44–84.

    Google Scholar 

  30. S.A. Kim and W.L. Johnson: Mater. Sci. Eng. A, 2007, vol. 452–453, pp. 633–39.

    Article  Google Scholar 

  31. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–75.

    Article  Google Scholar 

  32. T. Ungár and G. Tichy: Phys. Stat. Sol. (a), 1999, vol. 171, pp. 425–34.

    Article  Google Scholar 

  33. T. Ungár, I. Dragomir, Á. Révész and A. Borbély: J. Appl. Cryst., 1999, vol. 32, pp. 992–1002.

    Article  Google Scholar 

  34. A. Shibata, S. Morito, T. Furuhara and T. Maki: Acta Mater., 2009, vol. 57, pp. 483–92.

    Article  Google Scholar 

  35. S. Morito, J. Nishikawa and T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475–77.

    Article  Google Scholar 

  36. T. Ungár, A.D. Stoica, G. Tichy, X.L. Wang: Acta Mater., 2014, vol. 66, pp. 251–61.

    Article  Google Scholar 

  37. X. Huang, S. Morito, N. Hansen and T. Maki: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3517–31.

    Article  Google Scholar 

  38. V. Vitek: Phil. Mag., 2004, vol. 84, pp. 415–28.

    Article  Google Scholar 

  39. U. Essmann and H. Mughrabi: Philos. Mag. A, 1979, vol. 40, pp. 731–56.

    Article  Google Scholar 

  40. D. Akama, T. Tsuchiyama and S. Takaki: ISIJ Int., 2016, vol. 56, pp. 1675–80.

    Article  Google Scholar 

  41. S. Morito, T. Ohba, A.K. Das, T. Hayashi and M. Yoshida: ISIJ Int., 2013, vol. 53, pp. 2226–32.

    Article  Google Scholar 

  42. D. A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  Google Scholar 

  43. J. Stráská, M. Janeček, J. Gubicza, T. Krajňák, E.Y. Yoon, H.S. Kim, Mater. Sci. Eng. A, 2015, vol. 625, pp. 98–106.

    Article  Google Scholar 

  44. H. Mughrabi: Mater. Sci. Eng., 1987, vol. 85, pp. 15–35.

    Article  Google Scholar 

  45. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827–36.

    Article  Google Scholar 

  46. T. Waitz, H.P. Karnthaler and R.Z. Valiev: in Zehetbauer, M.J., Valiev, R.Z. (Eds.), Nanomaterials by Severe Plastic Deformation, 2004, Wiley-VCH, New York, pp. 337–50.

  47. J.A. El-Awady: Nat. Commun., 2015, vol. 6, 5926.

    Article  Google Scholar 

  48. K. Hanson and J.W. Morris Jr.: J. Appl. Phys., 1975, vol. 46, pp. 983–90.

    Article  Google Scholar 

  49. E. Schafler, K. Simon, S. Bernstorff, P. Hanák, G. Tichy, T. Ungár and M.J. Zehetbauer: Acta Mater., 2005, vol. 53, pp. 315–22.

    Article  Google Scholar 

  50. H. Mughrabi: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 411–20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Professor Shigeo Sato of Ibaraki University for the valuable discussion. ND experiments were performed at BL19 in the Materials and Life Science Facility of J-PARC under proposals 2014I0019 and 2014P0102. Partial financial support was provided by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (Grant Nos. 26289264, 15H05767) and Education Commission of Hubei Province of China (Grant No. B20161203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanus Harjo.

Additional information

Manuscript submitted December 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harjo, S., Kawasaki, T., Tomota, Y. et al. Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis. Metall Mater Trans A 48, 4080–4092 (2017). https://doi.org/10.1007/s11661-017-4172-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4172-0

Navigation