Skip to main content

Advertisement

Log in

Effect of Cr and Ni/Fe Ratio on the Microstructure and Mechanical Properties of γ′-Strengthened Ni–Fe-Based Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To continue to meet the future materials’ requirements for advanced power generation systems, enhancing the mechanical properties and long-term phase stability of Ni–Fe-based alloys is needed. In this study, alloying modifications were made to improve the phase stability and 0.2 pct yield strength of modified cast austenitic stainless steels used for high-temperature heat exchanger applications. The focus was to investigate the influence of Cr concentration and the ratio of Ni/Fe in the alloy system on the elevated temperature yield strength, ductility, and its matrix phase stability. Over the range of experimental alloy compositions investigated, the best balance of mechanical properties in tension at 750 °C was achieved through a modest reduction in Cr as this alloy possessed a yield strength of 630 MPa and 28 pct elongation. The \(\sigma \) phase volume fraction was also limited compared with other alloys. The modifications in Cr concentration and Ni/Fe ratio to the alloy system are independent with the γ′ precipitate solvus temperature and volume fraction formed during aging. However, decreasing Cr concentration from 21 at to 18 at.pct was observed to increase the yield strength and decrease the fraction of \(\sigma \) phase precipitation. Reductions in the Ni/Fe ratio led to a reduction of the tensile ductility as this tended to promote the formation of discontinuous precipitation along the grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Viswanathan, R., and Jack N.: Advanced heat resistant steel for power generation. (1999).

  2. R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10(1), pp. 96–101.

    Article  CAS  Google Scholar 

  3. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert: J. Mater. Eng. Perform., 2005, vol. 14(3), pp. 281–92.

    Article  CAS  Google Scholar 

  4. K. Chandra, K. Vivekanand, and R. Tewari: Corros Sci., 2013, vol. 67, pp. 118–29.

    Article  CAS  Google Scholar 

  5. J. Choi, C.-S. Seok, S. Park, and G. Kim: J. Mater. Res. Technol., 2019, vol. 8(2), pp. 2011–20.

    Article  CAS  Google Scholar 

  6. F. Wang and D.O. Northwood: Mater. Charact., 1993, vol. 31(1), pp. 3–10.

    Article  CAS  Google Scholar 

  7. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  8. T.M. Pollock and T. Sammy: J. Propul. Power, 2006, vol. 22(2), pp. 361–74.

    Article  CAS  Google Scholar 

  9. A.J. Ardell: Metall. Trans. A, 1985, vol. 16(12), pp. 2131–65.

    Article  Google Scholar 

  10. B. Reppich: Acta Metall., 1982, vol. 30(1), pp. 87–94.

    Article  CAS  Google Scholar 

  11. B. Reppich, P. Schepp, and G. Wehner: Acta Metall., 1982, vol. 30(1), pp. 95–104.

    Article  CAS  Google Scholar 

  12. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall Mater. Trans. A, 2009, vol. 40(7), pp. 1588–1603.

    Article  Google Scholar 

  13. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177(1–3), pp. 469–72.

    Article  CAS  Google Scholar 

  14. D.F. Paulonis, J.M. Oblak, and D.S. Duvall: Precipitation in Nickel-Base Alloy, Pratt and Whitney Aircraft, Middletown, 1969.

    Google Scholar 

  15. J.F. Radavich: Superalloy, 1989, vol. 718(33), pp. 229–40.

    Google Scholar 

  16. Z. Zhong, Y. Gu, and Y. Yuan: Mater. Sci. Eng. A, 2015, vol. 622, pp. 101–07.

    Article  CAS  Google Scholar 

  17. P. Zhang, Y. Yuan, Y.F. Gu, Y.Y. Dang, J.T. Lu, X.B. Zhao, J.C. Wang, C.Z. Zhu, and C.X. Fan: Mater. Charact., 2018, vol. 142, pp. 101–08.

    Article  CAS  Google Scholar 

  18. P. Zhang, Y. Yuan, L. Zhong, Y.F. Gu, J.B. Yan, J.T. Lu, and Z. Yang: Materialia, 2021, vol. 16, 101061.

    Article  CAS  Google Scholar 

  19. W. Sun, X. Qin, J. Guo, L. Lou, and L. Zhou: Mater. Des., 2015, vol. 69, pp. 70–80.

    Article  CAS  Google Scholar 

  20. Material Datasheet, Schmidt+Clemens Group Centralloy® G 4852 Micro, https://www.schmidt-clemens.com/fileadmin/sc-downloads/werkstoffdatenblaetter/WST_4852_Micro_161109.pdf

  21. J. Yan, Y. Gao, F. Yang, C. Yao, Z. Ye, D. Yi, and S. Ma: Mater. Sci. Eng. A, 2011, vol. 529, pp. 361–69.

    Article  CAS  Google Scholar 

  22. K.G. Buchanan, M.V. Kral, and C.M. Bishop: Metall Mater. Trans. A, 2014, vol. 45(8), pp. 373–85.

    Article  Google Scholar 

  23. G. Muralidharan, Y. Yamamoto, M.P. Brady, L.R. Walker, H.M.M. Iii, and D.N. Leonard: JOM, 2016, vol. 68(11), pp. 2803–10.

    Article  CAS  Google Scholar 

  24. Y. Yen, J. Su, and D. Huang: J. Alloys Compd., 2008, vol. 457(1–2), pp. 270–78.

    Article  CAS  Google Scholar 

  25. H.L. Yakel: Acta Crystallogr Sect. B, 1983, vol. 39(1), pp. 20–28.

    Article  Google Scholar 

  26. Dreshfield, R. L.: Further observations on the formation of σ phase in a nickel-base superalloy (IN-100). National Aeronautics and Space Administration, (1970).

  27. L. Zheng, C. Xiao, G. Zhang, G. Gu, and D. Tang: Rare Met., 2011, vol. 30(1), pp. 410–13.

    Article  CAS  Google Scholar 

  28. L. Zheng, C. Xiao, G. Zhang, B. Han, and D. Tang: J. Alloys Compd., 2012, vol. 527, pp. 176–83.

    Article  CAS  Google Scholar 

  29. T.H. Lee, Y. Lee, S. Joo, H.H. Nersisyan, K. Park, and J. Lee: Metall Mater. Trans. A, 2015, vol. 46(9), pp. 4020–26.

    Article  CAS  Google Scholar 

  30. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Superalloys, 1997, vol. 718(625), pp. 367–78.

    Google Scholar 

  31. C. Wang, Y. Wu, Y. Guo, J. Guo, and L. Zhou: J. Alloys Compd., 2019, vol. 784, pp. 266–75.

    Article  CAS  Google Scholar 

  32. J. Wang, W. Chen, H. Meng, Y. Cui, C. Zhang, and P. Han: J. Iron Steel Res. Int., 2019, vol. 26(5), pp. 452–61.

    Article  CAS  Google Scholar 

  33. D.M.E. Villanueva, F. C. P. Junior, R. L. Plaut, and A. F. Padilha: J. Mater., 2006, vol. 22(9), pp. 1098–1104.

    CAS  Google Scholar 

  34. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2009.

    Google Scholar 

  35. Ventura, A. P.: Microstructural evolution and mechanical property development of selective laser melted copper alloys. PhD diss., Lehigh University (2017)

  36. H.I. Aaronson and H.B. Aaron: Metall. Mater. Trans. B., 1972, vol. 3(11), pp. 2743–56.

    Article  CAS  Google Scholar 

  37. P. Zięba: Arch. Metall. Mater., 2017, vol. 62(2), pp. 955–68.

    Article  Google Scholar 

  38. Koyanagi, Y., H. Takabayashi, H. Y. Yasuda: Mater. Sci. Forum, vol. 941, pp. 1203–09. Trans Tech Publications Ltd, 2018.

  39. Y. Chong, Z. Liu, A. Godfrey, W. Liu, and Y. Weng: Philos. Mag. Lett., 2013, vol. 93(12), pp. 688–96.

    Article  CAS  Google Scholar 

  40. C.G. Ferguson, K.A. Christofidou, E.M. Hildyard, A.S. Wilson, N.G. Jones, and H.J. Stone: Materialia, 2020, vol. 13, p. 100855.

    Article  CAS  Google Scholar 

  41. Y. Zhou, F. Zhou, J.M.R. Martins, P. Nash, and J. Wang: Mater. Charact., 2019, vol. 151, pp. 612–19.

    Article  CAS  Google Scholar 

  42. S. Lech, W. Polkowski, A. Polkowska, G. Cempura, and A. Kruk: Scr. Mater., 2021, vol. 194, p. 113657.

    Article  CAS  Google Scholar 

  43. J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg: Metall Mater. Trans. A, 1997, vol. 28(12), pp. 2443–52.

    Article  Google Scholar 

  44. Y. Yuan, Z.H. Zhong, Z.S. Yu, H.F. Yin, Y.Y. Dang, X.B. Zhao, Z. Yang, J.T. Lu, J.B. Yan, and Y. Gu: Mater. Sci. Eng. A, 2014, vol. 619, pp. 364–69.

    Article  CAS  Google Scholar 

  45. K.C. Russell: Adv. Colloid Interface Sci., 1980, vol. 13(3–4), pp. 205–318.

    Article  CAS  Google Scholar 

  46. A.J. Ardell: J. Mater. Sci., 2011, vol. 46(14), pp. 4832–49.

    Article  CAS  Google Scholar 

  47. J.K. Chen, D. Farkas, and W.T. Reynolds: Acta Mater., 1997, vol. 45(11), pp. 4415–21.

    Article  CAS  Google Scholar 

  48. S. Lu, H. Zhang, Q. Hu, M. Punkkinen, B. Johansson, and L. Vitos: J. Phys., 2014, vol. 26(35), p. 355001.

    Google Scholar 

  49. E.M. Schulson, T.P. Weihs, D.V. Viens, and I. Baker: Acta Metall., 1985, vol. 33(9), pp. 1587–91.

    Article  CAS  Google Scholar 

  50. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64(9), p. 747.

    Article  Google Scholar 

  51. A. Kelly: Strengthening Methods in Crystals, Elsevier Publishing Company, Amsterdam, 1971.

    Google Scholar 

  52. M. Walbrühl, D. Linder, J. Ågren, and A. Borgenstam: J. Mater. Sci., 2017, vol. 700, pp. 301–11.

    Google Scholar 

  53. H. Kou, W. Li, J. Ma, J. Shao, Y. Tao, X. Zhang, and P. Geng: Int. J. Mech. Sci., 2018, vol. 140, pp. 83–92.

    Article  Google Scholar 

  54. R. Sun and C. Woodward, and Axel van de Walle: Phys. Rev. B, 2017, vol. 95(21), 214121.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge I-Ting, Ho from University of Arizona for his excellent contribution in material phase extraction operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Tin, S. Effect of Cr and Ni/Fe Ratio on the Microstructure and Mechanical Properties of γ′-Strengthened Ni–Fe-Based Alloys. Metall Mater Trans A 54, 838–853 (2023). https://doi.org/10.1007/s11661-022-06932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06932-7

Navigation