Skip to main content

Advertisement

Log in

Effect of Intercritical Annealing Time on the Microstructures and Tensile Properties of a High Strength TRIP Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A new Mn–Si–Al–Mo–Nb transformation-induced plasticity steel was annealed by intercritical annealing for different durations to investigate the partitioning of C element and the volume fraction change of the microstructural constituents. Direct experimental evidence confirms the partitioning of C elements in different phases during heat treatment by Electron probe microanalysis and X ray diffraction. The distribution of the precipitates was investigated as well. It was revealed that the microstructures and mechanical properties of the investigated steels were affected by the intercritical annealing time. According to the present experiment, the volume fraction of retained austenite and the product of tensile strength and total elongation of investigated steel decrease with increasing intercritical annealing time. It was observed that high tensile strength of 1,103 MPa, total elongation of 21.3%, and strength-ductility product of 23,493.9 MPa % could be successfully produced in this experimental steel at intercritical annealing temperature of 830 °C, holding for 1 min, and isothermal bainite treatment of 440 °C for 5 min holding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Kuziak, R. Kawalla, S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008)

    Article  Google Scholar 

  2. P.J. Jacques, Curr. Opin. Solid State Mater. Sci. 258, 259 (2004)

    Article  Google Scholar 

  3. T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Mater. Sci. Eng., A 528, 2394 (2011)

    Article  Google Scholar 

  4. J. Gao, M. Ichikawa, in Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, vol. 7 (AIST, Winter Park, CO, 2004), pp. 107–116

  5. F. El-Taib Heakala, N.S. Tantawy, O.S. Shehta, Mater. Chem. Phys. 30, 743 (2011)

  6. G.K. Tirumalasetty, M.A. van Huis, C.M. Fang, Q. Xua, F.D. Tichelaar, D.N. Hanlon, J. Sietsma, H.W. Zandbergen, Acta Mater. 59, 7406 (2011)

    Article  Google Scholar 

  7. E.V. Pereloma, I.B. Timokhina, K.F. Russell, M.K. Miller, Scr. Mater. 54, 471 (2006)

    Article  Google Scholar 

  8. W. Shi, L. Li, C.X. Yang, R.Y. Fu, L. Wang, P. Wollants, Mater. Sci. Eng., A 429, 247 (2006)

    Article  Google Scholar 

  9. C. Scott, P. Maugis, P. Barges, M. Goune, in Proceedings of International Conference on Advanced High Strength Sheet Steels for Automotive Applications, vol. 7 (AIST, Winter Park, CO, 2004), pp. 181–193

  10. X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang, Mater. Sci. Eng., A 438, 300 (2006)

    Article  Google Scholar 

  11. P. Wang, S. Zhang, S. Lu, D. Li, Y. Li, Acta Metall. Sin. (Engl. Lett.) 26, 669 (2013)

  12. F.G. Caballero, M.K. Miller, A.J. Clarkec, C. Garcia-Mateo, Scr. Mater. 63, 442 (2010)

    Article  Google Scholar 

  13. E.V. Pereloma, K.F. Russell, M.K. Miller, I.B. Timokhinac, Scr. Mater. 58, 1078 (2008)

    Article  Google Scholar 

  14. C.P. Scott, J. Drillet, Scr. Mater. 56, 489 (2007)

    Article  Google Scholar 

  15. S. Lee, S.J. Lee, B.C. de Cooman, Scr. Mater. 65, 225 (2011)

    Article  Google Scholar 

  16. J. Wang, S. van Der Zwaag, Metall. Mater. Trans. A 32, 1527 (2001)

    Article  Google Scholar 

  17. P.T. Pinard, A. Schwedt, A. Ramazani, U. Prahl, S. Richter, Microsc. Microanal. 19, 996 (2013)

    Article  Google Scholar 

  18. Z.C. Wang, S.J. Kim, C.G. Lee, T.H. Lee, J. Mater. Process. Technol. 151, 141 (2004)

    Article  Google Scholar 

  19. D.J. Dyson, B. Holmes, J. Iron. Steel Res. Int. 208, 469 (1970)

    Google Scholar 

  20. C. Wang, H. Ding, Z. Tang, J. Zhang, H.F. Di, Steel Res. 85, 388 (2014)

    Article  Google Scholar 

  21. G.R. Speich, V.A. Demarest, R.L. Miller, Metall. Trans. A 12, 1419 (1981)

    Article  Google Scholar 

  22. T. Akbay, C. Atkinson, J. Mater. Sci. 31, 2221 (1996)

    Article  Google Scholar 

  23. R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Acta Mater. 60, 3022 (2012)

    Article  Google Scholar 

  24. H.W. Luo, Scr. Mater. 66, 829 (2012)

    Article  Google Scholar 

  25. H.F. Lan, X.H. Liu, L.X. Du, Acta Metall. Sin. (Engl. Lett.) 25, 443 (2012)

  26. K.I. Sugimoto, T. Muramatsu, S.I. Hashimoto, Y. Mukai, J. Mater. Process. Technol. 177, 390 (2006)

    Article  Google Scholar 

  27. P. Jacques, J. Ladriere, F. Delannay, Metall. Mater. Trans. A 32, 2759 (2001)

    Article  Google Scholar 

  28. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51031001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ding.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, H., Zhang, J. et al. Effect of Intercritical Annealing Time on the Microstructures and Tensile Properties of a High Strength TRIP Steel. Acta Metall. Sin. (Engl. Lett.) 27, 457–463 (2014). https://doi.org/10.1007/s40195-014-0061-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0061-3

Keywords

Navigation